Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[96480] Artykuł:

Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements

Czasopismo: Journal of Cleaner Production   Tom: 258, Strony: 1-11
ISSN:  0959-6526
Opublikowano: Luty 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

foamed bitumencold recycled mixCRMbase coursecomplex modulusreclaimed asphalt pavement 



Abstract:

The paper investigates the influence of the binder penetration grade on the volumetric, mechanical and viscoelastic properties of cold recycled mixes with foamed bitumen. Cold recycled mixtures produced with foamed bitumen differ significantly from other bituminous paving materials (e.g. hot mix asphalt) in terms of aggregate coating and bonding with the bituminous binder. What is more, hydraulic binders usually contribute to the strength of those mixtures. These factors result in a decreased viscoelastic response of cold recycled mixtures, which may impact the sensitivity of these mixtures to the type of binder used, which has not been thoroughly studied yet. The main body of the conducted experiments included complex stiffness moduli measurements under cyclic uniaxial compressive loading, supplemented by assessment of air void content, indirect tensile strength, resistance to moisture damage, indirect tensile stiffness and static creep modulus. The composition of investigated mixtures with high rate of recycled materials was designed to reflect a common scenario in rehabilitation of deteriorated pavements subjected to low and medium traffic loads. The three utilized binders were graded as 35/50, 50/70 and 70/100 penetration road paving bitumen, and were added as foamed bitumen in 2.5% amounts to the cold mix. The recycled mixes contained 50% of reclaimed asphalt pavement material, 30% of reclaimed crushed stone base and 20% of virgin aggregates. A hydraulic binder in form of Portland cement was used as a binding agent in amounts of 2%. Each of the investigated mixtures exhibited significantly distinct results in terms of air void content, indirect tensile strength and creep stiffness modulus. The performance of mixtures with 50/70 and 70/100 binders was similar in indirect tensile stiffness moduli and complex stiffness moduli. It was found, that the binder type had significant effects on the compactability of investigated mixtures, which resulted in different mechanical performance. At the same time the influence of the binder type on the viscoelastic properties of the cold mixtures was attenuated. It was concluded that the limited influence of the binder used was caused by the significant amount of reclaimed asphalt material in the evaluated mixtures and the effects of cementitious binding of the Portland cement. The results showed that a wide range of penetration grade bitumen can be used for producing cold recycled mixtures with foamed bitumen with only minor effects on their performance and viscoelastic properties.



B   I   B   L   I   O   G   R   A   F   I   A
Airey, G.D., 2002. Use of Black Diagrams to Identify Inconsistencies in Rheological Data, Road Materials and Pavement Design. 3:4, 403-424. https://doi.org/10.1080/14680629.2002.9689933.
Airey, G.D., Rahimzadeh B., Collop A.C., 2003. Viscoelastic linearity limits for bituminous materials. Materials and Structures. 36, 643-647. https://doi.org/10.1007/BF02479495.
Brown, E.R., Kandhal, P.S., Zhang, J., 2001. Performance Testing for Hot Mix Asphalt. NCAT Report No. 01-05. National Center for Asphalt Technology. Auburn, AL.
Buczyński, P., Iwański, M. 2019. Characteristics of the complex modulus of recycled cold mix with foamed bitumen and recycled concrete aggregate. MATEC Web Conf., 262. https://doi.org/10.1051/matecconf/201926205002.
Chomicz-Kowalska, A., Stępień, J., 2016. Cost and Eco-Effective Cold In-Place Recycled Mixtures with Foamed Bitumen During the Reconstruction of a Road Section Under Variable Load Bearing Capacity of the Subgrade. Procedia Engineering. 161, 980-989. https://doi.org/10.1016/j.proeng.2016.08.837.
Chomicz-Kowalska, A., Maciejewski, K., 2015. Multivariate Optimization of Recycled Road Base Cold Mixtures with Foamed Bitumen. Procedia Engineering. 108, 436-444. https://doi.org/10.1016/j.proeng.2015.06.168.
Cizkova, Z., and Jan Suda, J., 2017. Viscoelastic behaviour of cold recycled asphalt mixes. IOP Conf. Ser.: Mater. Sci. Eng. 236. https://doi.org/10.1088/1757-899X/236/1/012017
D. Collings, J. Grobler, M. Hughes, K. Jenkins, F. Jooste, F. Long, H. Thompson
TG 2 Technical Guideline: Bitumen Stabilised Materials (second ed.), Asphalt Academy, Pretoria (2009)
Czapik, P., Zapała-Sławeta, J., Owsiak, Z., Stępień, P., 2020. Hydration of cement by-pass dust. Constr. Build. Mater. 231, 117139. https://doi.org/10.1016/j.conbuildmat.2019.117139.
Dołżycki, B., Jaczewski, M., Szydłowski, C., 2018. The Impact of Long-Time Chemical Bonds in Mineral-Cement-Emulsion Mixtures on Stiffness Modulus. The Baltic Journal of Road and Bridge Engineering. 13(2), 121-126. https://doi.org/10.7250/bjrbe.2018-13.406.
Huang, Y., Bird, R. N., Heidrich, O., 2007. A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling. 52 (1). https://doi.org/10.1016/j.resconrec.2007.02.002.
Iwański, M., Chomicz-Kowalska, A., 2012. Moisture and frost resistance of the recycled base rehabilitated with the foamed bitumen technology. Archives of Civil Engineering. 58(2), 185-198. https://doi.org/10.2478/v.10169-012-0011-2.
Iwański, M., Chomicz-Kowalska A., 2014a. Application of recycled aggregates to the road base mixtures with foamed bitumen in the cold recycling technology. Environmental Engineering. 155, 1-8. https://doi.org/10.3846/enviro.2014.155
M. Iwański, A. Chomicz-Kowalska
Evaluation of the effect of using foamed bitumen and bitumen emulsion in cold recycling technology
Sustainability, Eco-efficiency, and Conservation in Transportation Infrastructure Asset Management (2014), pp. 69-76, 10.1201/b16730-12
Iwański, M., Chomicz-Kowalska, A., 2016. Application of the foamed bitumen and bitumen emulsion to the road base mixes in the deep cold recycling technology. The Baltic Journal of Road and Bridge Engineering. 11(4), 291-301. https://doi.org/10.3846/bjrbe.2016.34
Iwański, M., Mazurek, G., Buczyński, P., 2018. Bitumen Foaming Optimisation Process on the Basis of Rheological Properties. Materials, 11, 1854. https://doi.org/10.3390/ma11101854.
Jaczewski, M., Judycki, J., Jaskula, P., 2019. Asphalt concrete subjected to long-time loading at low temperatures – Deviations from the time-temperature superposition principle. Constr. Build. Mater. 202, 426-439. https://doi.org/10.1016/j.conbuildmat.2019.01.049.
Leandri, P., Losa, M., Di Natale, A., 2015. Field validation of recycled cold mixes viscoelastic properties. Constr. Build. Mater. 75, 275-282. https://doi.org/10.1016/j.conbuildmat.2014.11.028.
Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D. T., Kianmehr, P., Mohamad, E. T., Khorami, M., 2019. Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete. Smart Structures and Systems, 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
Li, Z., Hao, P., Liu, H., Xu, J., 2019. Effect of cement on the strength and microcosmic characteristics of cold recycled mixtures using foamed asphalt. J. Clean. Prod. 230, 956-965, https://doi.org/10.1016/j.jclepro.2019.05.156.
Kuna, K., Gottumukkala, B., 2019. Viscoelastic characterization of cold recycled bituminous mixtures. Constr. Build. Mater. 199, 298-306. https://doi.org/10.1016/j.conbuildmat.2018.11.273.
Martinez-Arguelles, G., Giustozzi, F., Crispino, M., Flintsch, G. W., 2014. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 72, 423-433, https://doi.org/10.1016/j.conbuildmat.2014.09.024.
Medani, T. O., Huurman M., 2003. Construction the Stiffness Master Curves for Asphaltic Mixes. Delf University of Technology, Report 7-01-127-3.
Miliutenko, S., Björklund, A., Carlsson, A., 2013. Opportunities for environmentally improved asphalt recycling: the example of Sweden. J. Clean. Prod. 43, 156-165. https://doi.org/10.1016/j.jclepro.2012.12.040.
Nguyen, M.L, Sauze´at C., Di Benedetto H., Tapsoba N., 2013. Validation of the time–temperature superposition principle for crack propagation in bituminous mixtures. Materials and Structures. 46(7), 1075-1087. https://doi.org/10.1617/s11527-012-9954-7.
Olard, F., Di Benedetto, H., 2003. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Materials and Pavement Design. 4:2, 185-224. https://doi.org/10.1080/14680629.2003.9689946.
Perez, J., Cavaille, J.Y., Etienne, S., Jourdan, C., 1988. Physical interpretation of the rheological behavior of amorphous polymers through the glass transition. Revue de Physique Appliquee. 23 (2), 125-135. https://doi.org/10.1051/rphysap:01988002302012500.
Polaczyk, P., Han, B., Huang, B., Jia, X., Shu, X., 2018. Evaluation of the hot mix asphalt compactability utilizing the impact compaction method. Constr. Build. Mater. 187, 131-137. https://doi.org/10.1016/j.conbuildmat.2018.07.117.
Remišová, E., Decký, M., Podolka, L., Kováč, M., Vondráčková, T., Bartuška, L., 2015. Frost Index from Aspect of Design of Pavement Construction in Slovakia. Procedia Earth Planet. Sci. 15, 3–10. https://doi.org/10.1016/j.proeps.2015.08.002.
A. Toghroli, M. Shariati, M.R.B. Karim, Z. Ibrahim
Investigation on composite polymer and silica fume-rubber aggregate pervious concrete
Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering CSM, 95-99. Zurich, Switzerland (2017)
https://10.15224/ 978-1-63248-132-0-56
Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E. T., Khorami, M., 2018. A review on pavement porous concrete using recycled waste materials. Smart Structures and Systems, 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
Trojanová, M., Decký, M., Remišová, E., 2015. The implication of climatic changes to asphalt pavement design. XXIV R-S-P seminar, Theoretical Foundation of Civil Engineering (24RSP) (TF°CE 2015). Procedia Eng. 111, 770–776. https://10.1016/j.proeng.2015.07.144
Turk, J., Pranjić, A.M., Mladenovič, A., Cotič, Z., Jurjavčič, P., 2016. Environmental comparison of two alternative road pavement rehabilitation techniques: cold-in-place-recycling versus traditional reconstruction. J. Clean. Prod. 121, 45-55. https://doi.org/10.1016/j.jclepro.2016.02.040.
Wirtgen GmbH, Windhagen (2012)
Woszuk, A., Bandura, L., Franus, W., 2019. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 235, 493-502. https://doi.org/10.1016/j.jclepro.2019.06.353.
Vaitkus, A., Cygas, D., Laurinavicius, A., Perveneckas, Z., 2009. Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania. The Baltic Journal of Road and Bridge Engineering. 4(2), 80-86. https://10.3846/1822-427X.2009.4.80-86.
Xiao, R., Polaczyk, P., Zhang, M., Jiang, X., Zhang, Y., Huang, B., Hu, W., 2020. Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate. Transportation Research Record, 0361198119898695. https://doi.org/10.1177/0361198119898695.
N.I. Yusoff, E. Chailleux, G. Airey
A comparative study of the influence of shift factor equations on master curve construction
International Journal of Pavement Research and Technology, 4 (6) (2011), pp. 324-336
Zaumanis, M., Mallick, R.B., Frank, R., 2014. 100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling. 92, 230-245, https://doi.org/10.1016/j.resconrec.2014.07.007.
Zbiciak, A, Michalczyk, R, 2014. Characterization of the Complex Moduli for Asphalt-Aggregate Mixtures at Various Temperatures. Procedia Engineering. 91,118 – 123. https://doi.org/10.1016/j.proeng.2014.12.032.
Zhao, Y., Kim R.Y., 2003. The time-temperature superposition for asphalt mixtures with growing damage and permanent deformation in compression. Transportation Research Record. 1832(1), 161-172. https://doi.org/10.3141/1832-20.