Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[96470] Artykuł:

Resistance to Moisture-Induced Damage of Half-Warm-Mix Asphalt Concrete with Foamed Bitumen

Czasopismo: Materials   Tom: 13(3), Zeszyt: 654, Strony: 1-29
ISSN:  1996-1944
Opublikowano: Luty 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Mateusz Iwański orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0046.66  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport2535.0046.66  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport2535.0046.66  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

foamed bitumen  half-warm-mix asphalt  moisture and frost resistance  hydrated lime 



Abstract:

Hot-mix asphalt (HMA) remains the predominant material for pavement surfacing. Mixing is performed at about 180 °C, depending on the bitumen used. Environmental concerns in terms of emissions and energy demand are fostering new sustainable technologies in road construction. Warm-mix asphalt (WMA) and half-warm-mix asphalt (HWMA) mixtures meet current expectations in that they are produced at lower temperatures, 100–130 °C, ensured by foaming the bitumen with water. The extent of temperature reduction requires that the mixture has adequate moisture and frost resistance, which is particularly important in countries that have a low-temperature climate. Asphalt concrete AC 8 S with 50/70-grade foamed bitumen modified with 0.6 wt.% surface-active agent (SAA) was used in the tests. To provide the AC mixture with the required resistance to climatic factors (water, temperature below 0), hydrated lime was added at 0, 15, 30, and 45 wt.% as limestone filler replacement. The influence of the hydrated lime addition on the air void content and resistance to moisture and frost damage was investigated according to the WT-2 2014 methodology based on EN 12697-12: 2008 and to the modified AASHTO T283 method. The optimum content of hydrated lime for filler replacement was determined through statistical analysis of the test results. With the optimum hydrated lime replacement of 30%, the required level of moisture and frost resistance of HWMA concrete with foamed bitumen is achieved. The results of this study confirmed the suitability of HWMA concrete with foamed bitumen for application in road construction practice.



B   I   B   L   I   O   G   R   A   F   I   A
1. Vaitkus, A. Čygas, D. Laurinavičius, A. Perveneckas, Z. Analysis and evaluation of possibilities for the use of warm-mix asphalt in Lithuania. Balt. J. Road Bridge Eng. 2009, IV, 80–86. [Google Scholar] [CrossRef]
2. Ozturk, H.I. Kutay, M.E. Novel Testing Procedure for Assessment of Quality of Foamed Warm Mix Asphalt Binders. J. Mat. Civ. Eng. 2014, 26, 04014042. [Google Scholar] [CrossRef]
3. Leng, Z. Gamez, A. Al-Qadi, I.L. Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J. Mater. Civ. Eng. 2014, 26, 304–311. [Google Scholar] [CrossRef]
4. Król, J. Kowalski, K. P.Radziszewski, P. Rheological behavior of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology. Constr. Build. Mater. 2015, 93, 703–710. [Google Scholar [CrossRef]
5. Sanchez-Alonso, E. Vega-Zamanillo, A. Castro-Fresno, D. Del Rio-Prat, M. Evaluation of compatibility and mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 2011, 25, 2304–2311. [Google Scholar] [CrossRef]
6. Pszczoła, M. Jaczewski, M. Rys, D. Jaskula, P. Szydlowski, C. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test. Materials 2018, 11, 100. [Google Scholar] [CrossRef]
7. Remišová, E. Holý, M. Changes of Properties of Bitumen Binders by Additives Application 2017 IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar]
8. Silva, H.M. Oliveira, J.R. Peralta, J. Zoorob, S.E. Optimization of warm-mix asphalt using different blends of binders and synthetic paraffin wax contents. Constr. Build. Mater. 2010, 24, 1621–1631. [Google Scholar] [CrossRef]
9. Jamshidi, A. Hamzah, M.O. You, Z. Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art. Constr. Build. Mater. 2013, 38, 530–553. [Google Scholar] [CrossRef]
10. Iwański, M. Mazurek, G. The influence of the low-viscosity modifier on viscoelasticity behavior of the bitumen at high operational temperature. In Proceedings of the 8th International C Conference Environmental Engineering, Vilnius, Lithuania, 19–20 May 2011 Volume 1–3, pp. 1097–1102. [Google Scholar]
11. Iwański, M. Mazurek, G. Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery 2015, 60, 272–278. [Google Scholar]
12. Lu, X. Redelius, P. Effect of bitumen wax on asphalt performance. Constr. Build. Mater. 2006, 21, 1961–1970. [Google Scholar] [CrossRef]
13. Sengoz, B. Topa, A. Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Const. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
14. Woszuk, A. Wojciech Franus, W. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Appl. Sci. 2017, 7, 293. [Google Scholar] [CrossRef]
15. Woszuk, A. Zofka, A. Bandura, L. Franus, W. Effect of zeolite properties on asphalt foaming. Const. Build. Mater. 2017, 139, 247–255. [Google Scholar] [CrossRef]
16. Woszuk, A. Franus, W. Properties of the Warn Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
17. Barthel, W. Marchand, J. Von Devivere, M. Warm Mix Asphalt by adding a synthetic zeolite. In Proceedings of the Third Eurasphalt and Eurobitume Conference, Vienna, Austria, 12–14 May 2004 Foundation Eurasphalt: Breukelen, The Netherlands, 2004 pp. 1241–1249. [Google Scholar]
18. Van De Ven, M.F.C. Jenkins, K.U. Voskuilen, J.L.M. Van Den Beemt, R. Development of (half-) warm foamed bitumen mixes: State of the art. Int. J. Pavement Eng. 2007, 8, 163–175. [Google Scholar] [CrossRef]
19. Jenkins, K.J. de Groot, J.L.A. Van de Ven, M.F.C. Molenaar, A. Half-warm Foamed Bitumen Treatment, A New Process. In Proceedings of the Conference on Asphalt pavements for Southern Africa, Victoria Falls, Zimbabwe, 30 August–2 September 1999. [Google Scholar]
20. Jenkins, K.J. Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen. Ph.D. Dissertation, Department of Civil Engineering, Faculty of Engineering, University of Stellenbosch, Stellebosch, South Africa, September 2000. [Google Scholar]
21. Muthen, K.M. Foamed asphalt mixes. Mix design procedure Contract Report CR 98/077 SABITA Ltd&CSIR Transportek: Pretoria, South Africa, 2009. [Google Scholar]
22. Yu, X. Wang, F. Luo, T. Impacts of water content on rheological properties and performance-related behaviors of foamed war-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209. [Google Scholar] [CrossRef]
23. You, L. You, Yang, Ge, Lv, S. Laboratory testing of rheological behavior of water-foamed bitumen. J. Mater. Civ. Eng. 2018, 30, 04018153. [Google Scholar] [CrossRef]
24. Chomicz-Kowalska, Gardziejczyk, Iwański, M.M. Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete compacted at 95 °C. In Proceedings of the 12th International Scientific Conference of Modern Building Materials, Structures and Techniques (MBMST), Vilius, Lithuania, 26–27 May Volume 172, pp. 550–559. [Google Scholar] [CrossRef]
25. Mrugała, J. Optymalizacja składu betonu asfaltowego w technologii na półciepło z asfaltem spienionym w aspekcie właściwości eksploatacyjnych. [Optimization of asphalt concrete composition in half-warm mix asphalt technology with foamed bitumen in the aspect of operational properties]. Ph.D. Thesis, Department of Civil Engineering and Architecture, Kielce University of Technology, Kielce, Poland, February p. 211. [Google Scholar]
26. You, You, Dai, Guo, Wang, Schiltz, M. Characteristics of water-foamed asphalt mixture under multiple freeze-thaw cycles: Laboratory evaluation. J. Mater. Civ. Eng. 2018, 30, 04018270–1–04018270–8. [Google Scholar] [CrossRef]
27. Iwański, Chomicz-Kowalska, A. Evaluation of the effect of using foamed bitumen and bitumen emulsion in cold recycling technology. In Proceedings of the 3rd International Conference on Transportation Infrastructure (ICTI) Sustainability, Eco-efficiency and conservation in transportation infrastructure asset management, Pisa, Italy, 22–25 April Taylor and Francis: Milton Park, Oxfordshire, pp. 69–76. [Google Scholar]
28. Buczyński, Iwański, M. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers. IOP Conf. Series Mater. Sci. Eng. 2017, 245, 032042. [Google Scholar] [CrossRef]
29. Wirtgen. Wirtgen Cold Recycling Technology, 1st Wirtgen GmbH: Windhagen, Germany, 2012. [Google Scholar]
30. Iwański, Chomicz-Kowalska, Maciejewski, K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr. Build. Mater. 2015, 83, 62–69. [Google Scholar] [CrossRef]
31. Mrugała, Iwański, M.M. Resistance to permanent deformation of asphalt concrete with F-T wax modified foamed bitumen. In Proceedings of the 7th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD2015), Krakow, Poland, 22–24 June 2015 Elsevier: Amsterdam, Netherlands, 2015 Volume 108, pp. 459–466. [Google Scholar] [CrossRef]
32. Iwański, M.M. Chomicz-Kowalska, A. Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials 2019, 12, 3514. [Google Scholar] [CrossRef] [PubMed]
33. Stefańczyk, B. Mieczkowski, P. Mieszanki mineralno-asfaltowe: Wykonawstwo i badania. In Bituminous Mixtures: Performance and Research WKiŁ: Warszawa, Poland, 2008 p. 322. (In Polish) [Google Scholar]
34. Seebaly, P.E. Litte, D.N. Epps, J.A. The Benefis of Hydrated Lime in Hot Mix Asphalt The National Lime Association: Arlington, VA, USA, 2006. [Google Scholar]
35. Chachas, C.V. Liddle, W.J. Petersom, D.E. Wiley, M.L. Use of Hydrated Lime in Bituminous Mixtures to decrease Hardening of the Asphalt Cement Report PB 231 170 Utah State Highway Department: Salt Lake City, UT, USA, 1971. [Google Scholar]
36. Petresen, J.C. Plancher, H. Hansberg, P.M. Lime treatment of asphalt to reduce age hardening and improve flow properties. In Proceedings of the Association Asphalt Paving Technologists, Reno, NV, USA, 23–25 February 1987 Volume 56, pp. 632–653. [Google Scholar]
37. Stroup-Gardiner, M. Epps, J.A. Effect of Lime on Asphalt Concrete Performance. In Proceedings of the American Society Civil Engineers Materials Congress, Denver, CO, USA, 13–15 August 1990 pp. 921–930. [Google Scholar]
38. Luxemburg, F. Lime Hydrate as an Additive to Improve the Adhesion of Bitumen to the Aggregates. In Proceedings of the II International Conference Durable and Save Road Pavements, Kielce, Poland, 15–16 May 1996 pp. 296–302. [Google Scholar]
39. Lesueur, D. Petit, J. Ritter, H.-J. The mechanism of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Mater. Pavement Des. 2012, 14, 1–16. [Google Scholar] [CrossRef]
40. Iwański, M. Wapno hydratyzowane wielofunkcyjnym dodatkiem zwiększającym trwałość nawierzchni SMA. (Hydrated lime as a multifunctional additive for improving the durability of SMA pavements). Politechnika Świętokrzyska Monograph M59, Kielce University of Technology: Kielce, Poland, 2014. [Google Scholar]
41. Plancher, H. Green, E.L. Petersen, J.C. Reduction of oxidation hardening of asphalts by treatment with hydrated lime – A mechanistic study. In Proceedings of the Association Asphalt Paving Technologists 45, New Orleans, LA, USA, 16–18 February 1976 pp. 1–24. [Google Scholar]
42. Gorkem, C. Sengoz, B. Predicting stropping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Constr. Build. Mater. 2008, 23, 2227–2236. [Google Scholar] [CrossRef]
43. Lesueur, D. Little, D.N. Effect on hydrated lime on rheology, fracture and aging of bitumen. Transp. Res. Rec. 1999, 1661, 93–105. [Google Scholar] [CrossRef]
44. Hanson, D.I. Graves, R.E. Brown, E.E. Laboratory evaluation of the addition of lime treated sand to hot-mix asphalt. Transp. Res. Rec. 1994, 1469, 34–42. [Google Scholar]
45. Das, A.K. Singh, S.D. Investigation of rutting, facture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers. Constr. Build. Mater. 2017, 141, 442–452. [Google Scholar] [CrossRef]
46. Zou, J. Isola, M. Roque, R. Chun, S. Koh, C. Lopp, G. Effect of hydrated lime on fracture performance of asphalt mixture. Constr. Build. Mater. 2013, 44, 302–308. [Google Scholar] [CrossRef]
47. Iwański, M. Mazurek, G. Rheological properties of the bituminous binder extracted from SMA pavement with hydrated lime. Balt. J. Road Bridge Eng. 2016, 11, 93–101. [Google Scholar] [CrossRef]
48. Iwański, M. Mazurek, G. Hydrated lime as the anti-aging bitumen agent. In Proceedings of the 11th International Scientific Conference of Modern Building Materials, Structures and Techniques (MBMST), Vilnius, Lithuania, 16–17 May 2013 Volume 53, pp. 424–432. [Google Scholar] [CrossRef]
49. Das, A.K. Singh, D. Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef]
50. Jaskula, P. Judycki, J. Verification of the criteria for evaluation of water and frost resistance of asphalt concrete. Road Mater. Pavement Des. 2008, 9, 135–162. [Google Scholar] [CrossRef]
51. Judycki, J. Jaskuła, P. Badania odporności betonu asfaltowego na oddziaływanie wody i mrozu. (Investigations on the moisture and frost resistance of asphalt concrete). Drogownictwo 1997, 12, s.374–378. [Google Scholar]
52. Hesami, S. Roshani, H. Ossein Hamedi, G. Azarhoosh, A. Evaluate the mechanism of effect of hydrate lime on moisture damage of warm mix asphalt. Constr. Build. Mater. 2013, 47, 935–941. [Google Scholar] [CrossRef]
53. Khadaii, Kaziem Tehrani, Haghshenas, H.F. Hydrated lime effect on moisture susceptibility of warm mix asphalt. Constr. Build. Mater. 2012, 36, 165–170. [Google Scholar] [CrossRef]
54. Remišová, Decký, Podolka, Kováč, Vondráčková, Bartuška, L. Frost Index from Aspect of Design of Pavement Construction in Slovakia. Procedia Earth Planet. Sci. 2015, 15, 3–10. [Google Scholar] [CrossRef]
55. Jahromi, S.G. Estimation of resistance to moisture destruction in asphalt mixtures. Constr. Build. Mater. 2009, 23, 2324–2331. Available online: http://dx.doi.org/10.1016/j.conbuildmat.2008.11.007 (accessed on 20 August 2019). [CrossRef]
56. Trojanová, Remišová, E. The Implication of Climatic Changes to Asphalt Pavement Design. In Proceedings of the XXIV R-S-P seminar, Theoretical Foundation of Civil Engineering (24RSP) (TF°CE 2015), Samara, Russia, 24–28 August 2015 Elsevier, Procedia Eng: Amsterdam, The Netherlands, 2015 Volume 111, pp. 770–776. [Google Scholar] [CrossRef]
57. Judycki, J. Jaskuła, P. Pszczoła, Alenowicz, Dołżycki, Jaczewski, Ryś, Stienss, M. Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych (Catalogue of Typical Flexible and Semi-Rigid Pavement GDDKiA: Warsaw, Poland, 2014. [Google Scholar]
58. WT-2. Technical Guidelines 2: Asphalt pavements for national roads. Part I: Asphalt General Directorate for National Roads and Motorways: Warsaw, Poland, 2014. [Google Scholar]
59. Pralińska, Praliński, J. Badania statystyczne z Excelem. (Investigations in Statistics with Wydawnictwo SGGW: Warszawa, Poland, p. 223. (In Polish) [Google Scholar]
60. Koronacki, Mielniczuk, J. Statystyka dla Studentów kierunków Technicznych i przyrodniczych. (Statistics for Technical and Natural Sciences Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 2004. (In Polish) [Google Scholar]
61. Iwański, Uriew, N.B. The Asphalt Concrete as A Composite Material (with Nanodisperse and Polimer Moscow State Automobile and Road Technical University—Kielce Technical University (Poland): Moscow, Russia, p. 669. [Google Scholar]
62. Piasta, Lenarcik, A. Methods of Statistical Multi-Criteria Optimization Methods for Material Design of Cement-based Composites. E & FN Spon, London: New York, NY, USA, pp. 45–59. [Google Scholar]
63. STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
64. National Centre for Research and Development (NCBR) and the Polish General Directorate for National Roads and Motorways ( Report grant number DZP/RID-I-06/1/NCBR/ Kielce Technical University: Kielce, Poland, 2016.
65. Chomicz-Kowalska, Maciejewski, K. Multivariate optimization of recycled road base cold mixtures with foamed bitumen. Procedia Eng. 2015, 108, 436–444. [Google Scholar] [CrossRef]