Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[96230] Artykuł:

Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method

(Wpływ temeperatury na ocenę ryzyka korozji zbrojenia w betonie metodą impulsu galvanostatycznego)
Czasopismo: MDPI Applied Sciences   Tom: 10, Zeszyt: 3, Strony: 1-13
ISSN:  2076-3417
Opublikowano: Luty 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5050.00100.00  
Artur Wójcicki orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport5050.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Słowa kluczowe:

dignostyka betonu zbrojonego  metoda nieniszcząca  metoda impulsu galvanostatycznego  korozja zbrojenia  wpływ temperatury 


Keywords:

reinforced concrete diagnostics  non-destructive method  galvanostatic pulse method  reinforcement corrosion  temperature impact 



Streszczenie:

Elektrochemiczna polaryzacyjna metoda impulsu galwanostatycznego (GPM) jest wykorzystywana do badania zagrożenia korozyjnego zbrojenia w betonie. Jest to semi-nieniszcząca metoda, dzięki której na podstawie pomiarów rezystywności otuliny betonowej oraz potencjału stacjonarnego zbrojenia w elemencie żelbetowym można określić prawdopodobieństwo występowania korozji na badanym obszarze a na podstawie pomiarów gęstości prądu korozyjnego można oszacować aktywność korozyjną badanych prętów i prognozować jej rozwój w czasie na podstawie. Ze względu na elektrochemiczny charakter zachodzących procesów jak i specyfikę wykonywania pomiarów, zarówno temperatura otoczenia, jak i temperatura badanego elementu mogą mieć istotny wpływ na uzyskiwane wartości mierzonych parametrów. Spowodowane tym różnice w wynikach mogą prowadzić do błędnej oceny poziomu zagrożenia korozyjnego badanego elementu oraz błędnego prognozowania rozwoju korozji. W artykule zaprezentowano wyniki badań wykonane ww. metodą na próbkach żelbetowych przy zmieniających się wartościach temperatury badanych próbek. Badania wykonano za pomocą aparatury GP-5000 GalvaPulseTM. Uzyskane wyniki potwierdziły wpływ zmian temperatury badanego elementu na mierzone wielkości, jak również pozwoliły na uchwycenie trendu tych zmian.




Abstract:

The electrochemical galvanostatic pulse method (GPM) is used for the evaluation of the degree of corrosion risk of reinforcement in concrete. This non-destructive method enables determining the corrosion promoting conditions through the measurements of reinforcement stationary potential and concrete cover resistivity, and determining the probability of reinforcement corrosion in the tested areas. This method also allows for the estimation of the reinforcement corrosion activity and the prediction of the development of the corrosion process on the basis of corrosion current density measurements. The ambient temperature (and the temperature of the examined element) can significantly affect the values of the measured parameters due to electrochemical character of the processes as well as specific measurement technique. Differences in the obtained results can lead to a wrong interpretation of reinforcement corrosion risk degree in concrete. The article attempts to assess the effect of temperature on the measured parameters while using the galvanostatic pulse method. The GP-5000 GalvaPulseTM set was used. The results of this study confirmed the impact of temperature changes on the values of three measured parameters (reinforcement stationary potential, concrete cover resistivity, and corrosion current density) and contributed to catching the trend of these changes.



B   I   B   L   I   O   G   R   A   F   I   A
1. EN 1992-1-1:2008 Eurocode 2. Design of Concrete Structures. Part 1-1: General Standard and Standards for Buildings
Polish Committee for Standardization: Warsaw, Poland, 2008.
2. Neville, A.M. Properties of Concrete, 5th ed.
Pearson: London, UK, 2011.
3. Tang, S.W.
Yao, Y.
Andrade, C.
Li, Z.J. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78 Pt A, 143–154.
4. Baltazar-Zamora, M.A.
Bastidas, D.
Santiago-Hurtado, G.
Mendoza-Rangel, J.M.
Gaona-Tiburcio, C.
Bastidas, J.M.
Almeraya-Calderón, F. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials 2019, 12, 4007.
5. Gjørv, O.E. Durability of Concrete Structures. Arab. J. Sci. Eng. 2011, 36, 151–172.
6. Drobiec, Ł.
Jasiński, R.
Piekarczyk, A. Diagnosis of Reinforced Concrete Structures. Methodology, Field and Laboratory Testing of Concrete and Steel, 1st ed.
PWN: Warsaw, Poland, 2010.
7. Luo, D.
Li, Y.
Li, J.
Lim, K.S.
Nazal, N.A.M.
Ahmad, H. A Recent Progress of Steel Bar Corrosion Diagnostic Techniques in RC Structures. Sensors 2018, 19, 34.
8. Jaśniok, M.
Jaśniok, T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area. Procedia Eng. 2017, 193, 431–438.
9. Verma, S.K.
Bhadauria, S.S.
Akhtar, S. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures. Sci. World J. 2014, 2014, doi:10.1155/2014/957904.
10. Raczkiewicz, W.
Kossakowski, P.G. Electrochemical Diagnostics of Sprayed Fiber-Reinforced Concrete Corrosion. Appl. Sci. 2019, 9, 3763.
11. Schabowicz, K. Non-destructive testing of materials in civil engineering. Materials 2019, 12, 323.
12. Hoła, J.
Schabowicz, K. State-of-the-art non-destructive methods for diagnostic testing of building structures—anticipated development trends. Arch. Civ. Mech. Eng. 2010, 10, 5–18.
13. Stankiewicz, H. (Ed.) Corrosion Protection Technique. Sec. XI: Corrosion and Resistance of Mineral Materials
PWSZ: Warsaw, Poland, 1973.
14. Kurdowski, W. Cement and Concrete Chemistry. Industrial Chemistry and Chemical Engineering
Springer: Berlin/Heidelberg, Germany, 2014.
15. Bertolini, L.
Elsener, B.
Pedeferri, P.
Polder, R. Corrosion of Steel in Concrete, 2nd ed.
Wiley VCH: Weinheim, Germany, 2004.
16. Chess, P.
Green, W. Durability of Reinforced Concrete Structures, 1st ed.
CRC Press: Boca Raton, FL, USA, 2019.
17. Brodnan, M.
Kotes, P.
Vanerek, J.
Drochytka, R. Corrosion Determination of Reinforcement Using The Electrical Resistance Method. MaterialiinTehnologije 2017, 51, 85–93.
18. Brodnan, M.
Koteš, P.
Bahleda, F.
Šebök, M.
Kučera, M.
Kubissa, W. Using non-destructive methods for measurement of reinforcement corrosion in practice. Prot. Against Corros. 2017, 21, 55–58.
19. Morris, W.
Vico, A.
Vazquez, M.
de Sanchez, S.R. Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements. Corros. Sci. 2002, 44, 81–99.
20. Østvik, J-M. Thermal Aspects of Corrosion of Steel in Concrete: Effect of Low Temperature on the Resistivity and the Cathodic Reaction Rate. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2005.
21. Raczkiewicz, W.
Wójcicki, A.
Grzmil, W.
Zapala-Slaweta, J. Impact of Environment Conditions on the Degradation Process of Selected Reinforced Concrete Elements. IOP Conference Serie—Materials Science and Engineering. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (WMCAUS 2018), Prague, Czech Republic, June 18–22 2018
IOP: London, UK, 2019
Volume 471, doi:10.1088/1757-899X/471/3/032048.
22. Bäßler, R.
Burkert, A.
Frølund, T.
Klinghofer, O. Usage of GPM-Portable equipment for determination of corrosion stage of concrete structures. Corrosion 2003, 03388.
23. Frølund, T.
Jensen, F.M.
Bäßler, R. Smart Structures: Determination of Reinforcement Corrosion Rate by Means of the GPT
IABMAS Congress: Barcelona, Spain, 2002.
24. Sørense, H.E.
Frølund, T. Monitoring of reinforcement corrosion in marine concrete structures by the GPM. International Conference on Concrete in Marin Environments, Hanoi, Vietnam, Proceedings, October 2002, 213-220, doi: 10.13140/2.1.3342.1446.
25. Raczkiewicz, W.
Wójcicki, A. Selected aspects of forecasting the level of reinforcing steel corrosion in concrete by electrochemical method. Weld. Rev. 2017, 89, 28–33.
26. Elsener, B.
Klinghoffer, O.
Frolund, T.
Rislund, E.
Schiegg, Y.
Böhni, H. Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In Proceedings of the International Conference—Repair of Concrete Structures, Svolvaer, Norway, 28–30 May 1997.
27. Frølund, T.
Klinghofer, O.
Poulsen, E. Rebar Corrosion Rate Measurements for Service Life Estimates
ACI Fall Convention: Toronto, ON, Canada, 2000.
28. Raczkiewicz, W.
Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure—galvanostatic pulse method. In Proceedings of the 26th International Conference On Metallurgy And Materials (METAL), Brno, Czech Republic, 24–26 May 2017.
29. Raczkiewicz, W.
Grzmil, W. Assessment of the impact of cement type on the process of concrete carbonation and reinforcement corrosion in reinforced concrete specimens. Cem. Lime Concr. 2017, 4, 311–319.
30. Vedalakshmi, R.
Balamurugan, L.
Saraswathy, V.
Kim, S.-H.
Ann, K.Y. Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies. Ksce J. Civ. Eng. 2010, 14, 867–877.
31. Allampallewar, S.B.
Srividya, A. Corrosion performance of reinforced concrete member along Indian coasts: Effect of temperature & relative humidity. Int. J. Perform. 2008, 4, 285–292.
32. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on accessed on 28 September 2019).