Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[95220] Artykuł:

Hydration of cement by-pass dust

Czasopismo: Construction and Building Materials   Tom: 231, Strony: 1-9
ISSN:  0950-0618
Opublikowano: Styczeń 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Przemysław Czapik orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Niezaliczony do "N"Inżynieria lądowa, geodezja i transport4056.0046.66  
Justyna Zapała-Sławeta orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3042.0046.66  
Zdzisława Owsiak orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport2028.0046.66  
Piotr Stępień orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport1014.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Calorimetry  Hydration kinetics  SEM-EDX  Thermal analysis  X-ray diffraction  Cement By-Pass Dust 



Abstract:

Cement kiln dusts (CKD) generated during the production of Portland cement clinker differ markedly in composition and, hence, in properties. These dusts are commonly used as an addition to cement. In this article the way in which the selected dusts obtained from the cement kiln bypass system (CBPD) react with water and the phenomena accompanying this process at early stage are discussed. For this purpose, the kinetics of hydration was investigated using the calorimetric method and volume change observations. Phase and microstructural changes were investigated by X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy (SEM). It was found that the CBPD hydration process is primarily associated with the presence of free lime. It is characterized by a significant initial heat emission, which is accompanied by swelling the paste as a result of calcium hydroxide and calcium chloride salts formation.



B   I   B   L   I   O   G   R   A   F   I   A
[1] A. M. Neville, Properties of Concrete, 5th edition, Pearson United Kingdom, 2011.
[2] W. Kurdowski, Cement and Concrete Chemistry, Springer 2014.
[3] “2018 – Informator SPC – Przemysł Cementowy w liczbach”, Polish Cement Association reports, http://www.polskicement.pl/2018_INFORMATOR_SPC_Przemysl_Cementowy_w_liczbach-503 (accessed 10 September 2018).
[4] L. Czarnecki, Przyszłość betonu w warunkach zrównoważonego rozwoju, Materiały budowlane 11 (2006) 22-25.
[5] W.H. Duda, Cement data book, Bauverlag GmbH, Wiesbaden und Berlin 1985.
[6] S. Bethke, Utylizacja pyłów z pieców obrotowych, Cement Wapno Gips 7 (1976) 196-202.
[7] A.M. Ashteyat, R.H. Haddad, Y.T. Obaidat, Case study on production of self compacting concrete using white cement by pass dust, Case Stud. Constr. Mater. 9 (2018) e00190, https://doi.org/10.1016/j.cscm.2018.e00190.
[8] A.A. Ata, T.N. Salem, N.M. Elkhawas, Properties of soil-bentonite-cement by-pass mixtures for cutoff walls, Constr. Build. Mat. 93 (2015) 950-956, https://doi.org/10.1016/j.conbuildmat.2015.05.064.
[9] K.S. Al-Jabri, R.A. Taha, A. Al.-Hashmi, A.S. Al.-Harthy, Effecct of copper slag and cement by-pass dust addition on mechanical properties of concentrate, Constr. Build. Mat 20 (2006) 322-331, https://doi.org/10.1016/j.conbuildmat.2005.01.020.
[10] K.S. Al-Jabri, R.A. Taha, M .Al.-Ghassani, Use of cooper slag and cement by-pass dust as cementitous materials, Cem. Concr. and Aggr. 24 (2002) 7-12.
[11] D. Barnat-Hudek, J. Góra, Z. Suchorab, G. Łagód, 5 - Cement kiln dust, , in: R. Sissique, P. Cachim (Eds.), Waste and Supplementary Cementitious Materials in Concrete. Characterisation, Properties and Applications, Woodhead Publishing 2018, pp. 149-180, https://doi.org/10.1016/B978-0-08-102156-9.00005-5.
[12] L. Kalina, V. Bílek Jr., T. Kiripolský, R. Novotný, J. Másilko, Cement Kiln By-Pass Dust: An Effective Alkaline Activator for Pozzolanic Materials, Materials 11 (2018) 1770, https://doi.org/10.3390/ma11091770
[13] S. Stryczek, A. Gonet, P. Czapik, Developing technological properties of sealing slurries with the use of cement dust, AGH Drilling, Oil, Gas 26 (2009) 345-354.
[14] S. Peethamparan, J. Olek, J. Lovell, Influence of chemical and Physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization, Cem. Concr. Res. 38 (2008) 803-815, https://doi.org/10.1016/j.cemconres.2008.01.011.
[15] D. Bondar, E, Coakley, Use of gypsum and CKD to enhance early age strength of High Volume Fly Ash (HVFA) pastes, Constr. Build. Mat. 71 (2014) 93-108, https://doi.org/10.1016/j.conbuildmat.2014.08.015.
[16] C.L. Senior, A.F. Sarofim, E. Eddings, Fate of mercury in cement kilns, Air & Waste Management Association 98th Annual Conference and Exhibition, Minneapolis, USA 2005.
[17] P. Buczyński, M. Iwański, The Influence of Hydrated Lime, Portland Cement and Cement Dust on Rheological Properties of Recycled Cold Mixes with Foamed Bitumen, Procedia of “Environmental Engineering” 10th International Conference, Lithuania, 27–28 April 2017, https://doi.org/10.3846/enviro.2017.135.
[18] N. Yoobanpot, P. Jamsawang, S Horpibulsuk, Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue, Appl. Clay Sci. 141 (2017) 146-156, https://doi.org/10.1016/j.clay.2017.02.028.
[19] M. Lachemi, M. Şahmaran, K.M.A. Hossain, A. Lofty, M. Shehata, Properties of controlled low strength materials incorporating cement kiln dust and slag, Cem. Concr. Compos. 32 (2010) 623-629, https://doi.org/10.1016/j.cemconcomp.2010.07.011.
[20] M. Iwański, G. Mazurek, P. Buczyński, Bitumen Foaming Optimisation Process on the Basis of Rheological Properties, Materials 11 (2018), 1854, https://doi.org/10.3390/ma11101854.
[21] PN-EN 197-1:2012 Cement - Part 1: Composition, specifications and conformity criteria for common cements, Polish Committee for Standardization Warsaw, Poland, 2012.
[22] PN-EN 196-6:2011 Methods of testing cement. Determination of fineness, Polish Committee for Standardization, Warsaw, Poland, 2011.
[23] PN-EN 196-3:2016-12 Methods of testing cement. Determination of setting times and soundness, Polish Committee for Standardization, Warsaw, Poland, 2016.
[24] ASTM C 1608 – 17: Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste, ASTM International: West Conshohocken, PA, USA, 2017.
[25] W. Nocuń-Wczelik, P. Czapik, Use of calorimetry and other methods in the studies of water reducers and set retarders interaction with hydrating cement paste, Constr. Build. Mat. 38 (2013) 980-986, https://doi.org/10.1016/j.conbuildmat.2012.09.048.
[26] W. Kurdowski, G. Kądzielawski, Traps in the chemistry of cement, Cem. Lime Concr. 21 (2018) 333-339.
[27] J. Tian, Q. Guo, Thermal Decomposition of Hydrocalumite over a Temperature Range of 400–1500 ºC and Its Structure Reconstruction in Water, J. Chem. (2014), http://dx.doi.org/10.1155/2014/454098.
[28] G. Paul, E. Boccaleri, L. Buzzi, F. Canonico, D. Gastaldi, Friedel's salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study, Cem. Concr. Res. 67 (2015) 93-102, https://doi.org/10.1016/j.cemconres.2014.08.004.
[29] U.A. Birnin-Yauri, F.P. Glasser, Friedel’salt, Ca2AL(OH)6(Cl,OH)•2H2O: Its solid solutions and their role in chloride biding, Cem. Concr. Res. 28 (1998) 1713-1723, https://doi.org/10.1016/S0008-8846(98)00162-8.
[30] A.K. Surayavashi, R. Narayan Swamy, Stability of Friedel’s salt in carbonated concrete structural elements, Cem. Concr. Res. 26 (1996) 729-741, https://doi.org/10.1016/S0008-8846(96)85010-1
[31] A. Gameiro, A. Santos Silva, P. Faria, J. Grilo, T. Braco, R Veiga, A. Velosa, Physical and chemical assessment of lime-metakaolin mortars: Influence of binder:aggregate ratio, Cem. Concr. Comp. 45 (2014) 264-271, https://doi.org/10.1016/j.cemconcomp.2013.06.010.
[32] S. Galmarini, A, Aimeble, N. Ruffray, P. Bowen, Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment, Cem. Concr. Res 41 (2011) 1330-1338, https://doi.org/10.1016/j.cemconres.2011.04.009.
[33] N. Hernandez, J. Lizarazo-Marriaga, M.A. Rivas, Petrographic characterization of Portlandite crystal size in cement pastes affected by different hydration environments, Constr. Build. Mat. 182 (2018) 541-549, https://doi.org/10.1016/j.conbuildmat.2018.06.142.
[34] A. Mesbah, M. François, C. Cau-dit-Coumes, F. Frizon, Y. Filinchuk, F. Leroux, J. Ravaux, G. Renaudin, Crystal structure of Kuzel's salt 3CaO • Al2O3 • 1/2CaSO4 • 1/2CaCl2 • 11H2O determined by synchrotron powder diffraction, Cem. Concr. Res. 41 (2011) 504–509, https://doi.org/10.1016/j.cemconres.2011.01.015.
[35] J.T. Kloprogge, Z. Ding, W.N. Martens, R.D. Schuiling, L.V. Duong, R.L. Frost, Thermal decomposition of syngenite, K2Ca(SO4)2•H2O, Thermochim. Acta 417 (2004) 143-155, https://doi.org/10.1016/j.tca.2003.12.001.