Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[92770] Artykuł:

Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics.

Czasopismo: Materials (Basel, Switzerland)   Tom: 12, Zeszyt: 21, Strony: 1-20
ISSN:  1996-1944
Opublikowano: Pażdziernik 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Mateusz Iwański orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport2535.0070.00  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejNiespoza "N" jednostkiInżynieria lądowa, geodezja i transport2535.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

foamed bitumen  surface active agent  expansion ratio  half-life  half-warm mix asphalt 



Abstract:

To ensure the standard properties of half-warm asphalt (HWA) mixes produced with foamed bitumen, the binder needs to have the best possible characteristics. One way to attain this is to modify the bitumen before it is foamed. The 50/70 penetration bitumen used in this study, was modified with a surface active agent (SAA) at different rates (0.2%, 0.4%, and 0.6% by wt.). The effect of the modifier on the bitumen properties (penetration, softening point, the Fraass breaking point, dynamic viscosity at 60 ◦C, 90 ◦C, and 135 ◦C) and on the binder foaming parameters (expansion ratio - ER, half-life - HL, foam index - FI) was investigated and the optimum quantity of foaming
water was determined. Statistical analysis of the results showed that the addition of 0.6% SAA had the most beneficial effect on the set of 50/70 bitumen standard properties and foaming characteristics.



B   I   B   L   I   O   G   R   A   F   I   A
1. Stefańczyk, B. Mieczkowski, P. Mieszanki mineralno-asfaltowe: wykonawstwo i badania. In Bituminous Mixtures. Performance and Research WKiŁ: Warszawa, Poland, 2008, p. 322. (In Polish).
2. Piłat, J. Radziszewski, P. Nawierzchnie asfaltowe: Podręcznik akademicki. In Asphalt Pavements WKiŁ: Warszawa, Poland, 2010. (In Polish).
3. Hofko, B Dimitrov, M. Schwab, O. Weiss, F. Rechberger, H. Grothe, H. Technological and environmental performance of temperature-reduced mastic asphalt mixtures. Road Mater. Pavement Des. 2017, 18, 22–37, doi:10.1080/14680629.2016.1141703
4. Van De Ven, M.F.C. Jenkins, K.J. Voskuilen, J.L.M. Van Den Beemt, R. Development of (half-) warm foamed bitumen mixes: State of the art. Int. J. Pavement Eng. 2007, 8, 163–175. doi:10.1080/10298430601149635
5. Jenkins, K.J. De Groot, J.L.A. Van de Ven, M.F.C. Molenaar, A. Half-warm Foamed Bitumen Treatment, A New Process”. In Proceedings of the 7th Conference on asphalt pavements for Southern Africa, Victoria Falls, Zimbabwe, 29 August–2 September 1999.
6. Vaitkus, A. Čygas, D. Laurinavičius, A. Perveneckas, Z. Analysis and evaluation of possibilities for the use of warm mix asphalt in lithuania. Balt. J. Road Bridge Eng. 2009, IV, 80–86, doi:10.3846/1822-427X.2009.4.80-86.
7. Król, J. Kowalski, K. Radziszewski, P. Rheological behavior of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology. Constr. Build. Mater. 2015, 93, 703–710. doi:10.1016/j.conbuildmat.2015.06.033.
8. Iwański, M. Mazurek, G. The influence of the low-viscosity modifier on viscoelasticity behavior of the bitumen at high operational temperature. In Proceedings of the 8th International Conference Environmenal Engineering, Vilnius, Lithuania, 19–20 May 2011 Volume 1–3, pp. 1097–1102.
9. Pszczola, M. Jaczewski, M. Rys, D. Jaskula, P. Szydlowski, C. Evaluation of asphalt mixture low-temperature performance in bending beam creep test. Materials 2018, 11, 100. doi:10.3390/ma11010100
10. Hugo Silva, M.R.D. Joel, R.M. Oliveira, J. Peralta, J. Zooro, S.E. Optimization of warm mix asphalt using different blends of binders and synthetic paraffin wax contents. Constr. Build. Mater. 2010, 24, 1621–1631. doi:10.1016/j.conbuildmat.2010.02.030.
11. Leng, Z. Gamez, A. Al-Qadi, I.L. Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J. Mater. Civ. Eng. 2014, 26, 304–311, doi:10.1061/(ASCE)MT.1943-5533.0000810.
12. Jamshidi, A. Hamzah, M.O. You, Z. Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art”. Constr. Build. Mater. 2013, 38, 530–553, doi:10.1016/j.conbuildmat.2012.08.015.
13. Iwański, M. Mazurek, G. Optimization on the syntetic wax content on example of bitumen 35/50. Procedia Eng. 2013, 57, 414–423, doi:10.1016/j.proeng.2013.04.054.
14. Muthen, K.M. Foamed Asphalt Mixes. Mix Design Procedure Contract Report CR 98/077 SABITA Ltd.&CSIR Transportek: Pretoria, South Africa, 2009.
15. Wong, W.G. Li, G. Analysis of the effect of wax content on bitumen under performance grade classification. Constr. Build. Mater. 2009, 23, 2504–2510, doi:10.1016/j.conbuildmat.2009.02.030.
16. Sanchez-Alonso, E. Vega-Zamanillo, A. Castro-Fresno, D. Del Rio-Prat, M. Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 2011, 25, 2304–2311, doi:10.1016/j.conbuildmat.2010.11.024.
17. Judycki, J. Stienss, M. Badania mieszanek mineralno-asfaltowych o obniżonej temperaturze otaczania—Raport końcowy. In Evaluation of Low-Temperature Bituminous Mixtures—Final Report GDDKiA, Warsaw, Poland: 2014. (In Polish).
18. Lu, X. Redelius, P. Effect of bitumen wax on asphalt performance. Constr. Build. Mater. 2006, 21, 1961–1970, doi:10.1016/j.conbuildmat.2006.05.04.
19. Jenkins, K.J. Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen. Ph.D. Thesis, Department of Civil Engineering, Faculty of Engineering, University of Stellenbosch, Stellebosch, South Africa, 2000.
20. Chomicz-Kowalska, A. Gardziejczyk, W. Iwański, M.M. Moisture resistance and compactability of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen. Constr. Build. Mater. 2016, 126, 108–118, doi:10.1016/j.conbuildmat.2016.09.004.
21. Woszuk, A. Zofka, A. Bandura, L. Franus, A. Effect of zeolite properties on asphalt foaming. Constr. Build. Mater. 2017, 139, 247–255, doi:10.1016/j.conbuildmat.2017.02.054.
22. Martinez-Arguelles, G. Giustozzi, F. Crispino, M. Flintsch, G.W. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 2014, 72, 423–433, doi:10.1016/j.conbuildmat.2014.09.024.
23. Sengoz, B. Topa, A. Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr. Build. Mater. 2013, 43, 242–252, doi:10.1016/j.conbuildmat.2013.02.026.
24. Woszuk, A. Application of fly ash derived zeolites in warm-mix asphalt technology. Materials 2018, 11, 1542, doi:10.3390/ma11091542.
25. Barthel, W. Marchand, J. Von Devivere, M. Warm Mix Asphalt by adding a synthetic zeolite. In Proceedings of the Third Eurasphalt and Eurobitume Conference, Vienna, Austria, 12–14 May 2004 Foundation Eurasphalt: Breukelen, The Netherlands, 2004 pp. 1241–1249.
26. Chomicz-Kowalska, A. Iwański, M.M. Mrugała, J. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures With Foamed Bitumen”. In IOP Conf. Series: Materials Science and Engineering IOP Publishing, Bristol, England: 2017 Volume 245. doi:10.1088/1757-899X/245/3/032092.
27. Ozturk, H.I. Kutay, M.E. Novel testing procedure for assessment of quality of foamed warm mix asphalt binders. J. Mater. Civil Eng. 2014, 26, 04014042, doi:10.1061/(ASCE)MT.1943 5533.0000924.
28. Saleh, M. Characterization of Foam Bitumen Quality and the Mechanical Properties of Foam Stabilized Mixes University of Canterbury Research Repository, Christchurch, New Zealand: 2006.
29. Recycling, C. Wirtgen Cold Recycling Technology, 1st ed. Wirtgen GmbH: Windhagen, Germany, 2012.
30. He, G. Wong, W. Decay properties of the foamed bitumens. Constr. Build. Mater. 2006, 20, 866–877. doi:10.1016/j.conbuildmat.2005.06.027.
31. Jenkins, K.J. Molenaar, A. De Groot, J.L.A. Van de Ven, M.F.C. Developments in the uses of foamed bitumen in road pavements. HERON 2000, Volume 45(3), 167- 176.
32. Iwański, M. Buczyński, P. Mazurek, G. The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 763–773, doi:10.1515/bpasts-2016-0085.
33. Iwański, M. Chomicz-Kowalska, A. Maciejewski, K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr. Build. Mater. 2015, 83, 62–69, doi.10.1016/j.conbuildmat.215.02.060.
34. Baranov, E.N. Formation and properties of bituminous foams. Chem. Technol. Fuels Oils 1990, 26, 544–548.
35. Mazurek, G. Optymalizacja składu betonu asfaltowego modyfikowanego woskiem syntetycznym w zakresie odkształceń plastycznych. [Optimization of the asphalt concrete aggregate modified with synthetic wax in the field of plastic deformation]. Ph.D. Thesis, Department of Civil and Environmental Engineering, Kielce University of Technology, Kielce, Poland, 2012 p. 303.
36. Yu, X. Wang, Y. Luo, T. Impacts of water content on rheological properties and performance-related behaviours of foamed war-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209, doi:10.1016/j.conbuildmat.2013.06.018.
37. Chomicz-Kowalska, A. Gardziejczyk, W. Iwański, M.M. Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete compacted at 95 °C. In Proceedings of the 12th International Scientific Conference of Modern Building Materials, Structures and Techniques (MBMST), Vilius, Lithuania, 16–17 May 2017 Volume 172, pp. 550–559, doi:10.1016/j.proeng.2017.02.065.
38. Mrugała, J. Iwański, M.M. Resistance to permanent deformation of asphalt concrete with F-T wax modified foamed bitumen. In Proceedings of the 7th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD2015), Krakow, Poland, 22–24 June 2015 Volume 108, pp. 459-466, doi:10.1016/j.proeng.2015.2015.06.171.
39. Iwański, M. Mazurek, G. Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery 2015, 60, 272–278.
40. Chomicz-Kowalska, A. Mrugała, J. Maciejewski, K. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent. In IOP Conference Series: Materials Science and Engineering IOP Publishing, Bristol, England: 2017 Volume 245. doi:10.1088/1757-899X/245/3/032086.
41. Katalog Typowych Nawierzchni Podatnych i Półsztywnych. Generalna Dyrekcja Dróg i Autostrad. In Catalog of Typical Susceptible and Semi-rigid Paving Structures General Directorate for National Roads and Motorways: Warsaw, Poland, 2014 p. 112.
42. STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
43. Chomicz-Kowalska, A. Maciejewski, K. Multivariate Optimization of Recycled Road Base Cold Mixtures with Foamed Bitumen. Procedia Eng. 2015, 108, 436-444, doi:10.1016/j.proeng.2015.06.168.