Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[91600] Artykuł:

Manufacturing Errors of Concrete Cover as a Reason of Reinforcement Corrosion in a Precast Element—Case Study

(Błędy wykonawcze otuliny betonowej jako przyczyna korozji zbrojenia elemntu prefabrykowanego - studium przypadku)
Czasopismo: MDPI Coatings   Tom: 9, Zeszyt: 702, Strony: 1-12
ISSN:  2079-6412
Opublikowano: Pażdziernik 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport2727.00.00  
Kamil Bacharz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport2727.00.00  
Magdalena Bacharz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport2727.00.00  
Wioletta Grzmil orcid logo WBiAKatedra Architektury i Urbanistyki**Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport1919.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

precast element  reinforced concrete wall  concrete cover thickness  reinforcement corrosion risk  semi non-destructive galvanostatic pulse method  concrete phase composition  analysis of reinforcement distribution 



Abstract:

The article concerns the assessment of technical condition of the precast loggia wall in a large panel building after 25 years of use as well as the cause of its damage. As a result of the study, cracks and losses of the concrete cover were found. Corrosion products were visible on exposed reinforcing rods. The reinforcement distribution and concrete cover thickness in loggia wall were estimated using a rebar detector. The corrosion assessment of reinforcement was performed using a semi non-destructive galvanostatic pulse method that allows the location of areas of corrosion and estimate the reinforcement corrosion activity. The phase composition of the concrete cover was analyzed. The test results showed an insufficient thickness of the concrete cover as the main cause of loggia wall damage. The research indicated that manufacturing errors made in the prefabrication plants affect the technical condition of precast elements and may lead to the damage of the structure well before the expected of its service life. In the case of manufacturing errors causing the implementation of an element with a concrete cover that does not meet the standard requirements for thickness and tightness, it is recommended to use protective coatings to increase the element’s durability to the designed level.



B   I   B   L   I   O   G   R   A   F   I   A
References
Beyer, C.
Ortlepp, S.
Naumann, T.
Ortlepp, R. Reinforced concrete roof frames as a typical construction form of the post-war period. Bautechnik 2018, 95, 16–26. [Google Scholar] [CrossRef]
Borodinecs, A.
Zemitis, J.
Dobelis, M.
Kalinka, M.
Geikins, A. Development of Prefabricated Modular Retrofitting Solution for Post-World War II Buildings. In Proceedings of the Environmental Engineering 10th International Conference, Vilnius Gediminas Technical University, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
Gu, W.
Zhao, Y.
Zhang, D. The Application of PC Technology in Public Buildings: A Case Study of Security Center. In Proceedings of the Twelfth National Athletics, International Conference on Advances in Energy and Environmental Science (ICAEES), Guangzhou, China, 30–31 July 2013. [Google Scholar]
Segura, I.
Cavalaro, S.
de la Fuente, A.
Aguado, A.
Alegre, V. Service-Life Assessment of Existing Precast Concrete Structure Exposed to Severe Marine Conditions. J. Perform. Constr. Facil. 2016, 30, 1–14. [Google Scholar] [CrossRef]
Melchers, R.E.
Li, C.Q. Reinforcement Corrosion in Concrete Exposed to the North Sea for More Than 60 Years. Corrosion 2009, 65, 554–566. [Google Scholar] [CrossRef]
Saffiuddin, M. Concrete damage in Field Conditions and Protective Sealer and Coating Systems. Coatings 2017, 7, 90. [Google Scholar] [CrossRef]
Tworzewski, P.
Szczecina, M.
Uzarska, I. Numerical Modeling of Reinforced Concrete Beams, Including the Real Position of Reinforcing Bars. Struct. Environ. 2018, 1, 28–38. [Google Scholar]
Tworzewski, P.
Goszczyńska, B. Relation between Reliability and Reinforcement Manufacturing Errors in Reinforced Concrete Beams. Struct. Environ. 2017, 1, 16–24. [Google Scholar]
Tworzewski, P.
Goszczyńska, B. An Application of an Optical Measuring System to Reinforced Concrete Beams Analysis. In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016. [Google Scholar]
Parasonis, J. Quality control with the assurance of normative precision of geometrical parameters in erection of one-storey framed buildings. In Proceedings of the 8th International Conference on Durability of Building Materials and Components (8dbmc), Vancouver, BC, Canada, 30 May–3 June 1999. [Google Scholar]
Li, J.
Ji, Y.
Huang, G.
Zhang, L. Microstructure Evolution of Magnesium Phosphate Protective Layer on Concrete Structures in a Sulfate Environment. Coatings 2018, 8, 140. [Google Scholar] [CrossRef]
Li, G.
Cui, H.
Zhou, J.
Hu, W. Improvements of Nano-TiO2 on the Long-Term Chloride Resistance of Concrete with Polymer Coatings. Coatings 2019, 9, 323. [Google Scholar] [CrossRef]
Climent, M.A.
Carmona, J.
Garces, P. Graphite-Cement Paste: A New Coating of Reinforced Concrete Structural Elements for the Application of Electrochemical Anti-Corrosion Treatments. Coatings 2016, 6, 32. [Google Scholar] [CrossRef]
Concrete, Reinforced Concrete and Prestressed Structures. Static Calculations and Design
PN-84/B-03264
Polish Standardization, Measurement and Quality Committee: Warsaw, Poland, 1986
[Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie in Polish].
LST, E. PN-EN 206–1 Concrete—Part 1: Specification, Performance, Production and Conformity
British Standards Institution: London, UK, 2002. [Google Scholar]
Steel for Determined Purposes—Steel for Concrete Reinforcement—Grades
PN-89/H-84023/06
Polish Standardization, Measurement and Quality Committee: Warsaw, Poland, 1989
[Stal określonego zastosowania. Stal do zbrojenia betonu. Gatunki. in Polish].
Eurocode 2—Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings
PN-EN 1992-1-1
European Committee for Standardization: Brussels, Belgium, 2004.
Urbanowicz, D.
Warzocha, M. Wykorzystanie urządzeń ferromagnetycznych w diagnostyce konstrukcji budowlanych. Prz. Bud. 2015, 5, 32–35. [Google Scholar]
De Alcantara, N.P.
Costa, D.C.
Guedes, D.S.
Artori, R.V.
Bastos, P.S. A Non-Destructive Testing Based on Electromagnetic Measurements and Neural Networks for the Inspection of Concrete Structures. Adv. Mater. Res. 2011, 301, 597–602. [Google Scholar] [CrossRef]
Salman, A.A. Non-Destructive Test of Concrete Structures Using: FERROSCAN. Eng. Technol. J. 2011, 29, 2933–2941. [Google Scholar]
Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—A review. Cem. Concr. Compos. 2003, 25, 459–473. [Google Scholar] [CrossRef]
Poursaee, A.
Hanson, C.M. Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corros. Sci. 2008, 50, 2739–2746. [Google Scholar] [CrossRef]
Song, H.W.
Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar]
Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. In American Society of Testing and Materials
ASTM C876–09
ASTM: West Conshohocken, PA, USA, 2009.
Klinghoffer, O. In situ monitoring of reinforcement corrosion by means of electrochemical methods. Nord. Concr. Res. 1995, 1, 1–13. [Google Scholar]
Elsner, B.
Klinghoffer, O.
Frolund, T.
Rislund, E.
Schiegg, Y.
Böhni, H. Assessment of Reinforcement Corrosion by Means of Galvanostatic Pulse Technique. In Proceedings of the International Conference Repair of Concrete Structures Norway, Svolvaer, Norway, 28–30 May 1997. [Google Scholar]
Frølund, T.
Klinghoffer, O.
Poulsen, E. Rebar Corrosion Rate Measurements for Service Life Estimates
ACI Fall Convention: Toronto, ON, Canada, 2000. [Google Scholar]
Vedalakshmi, R.
Balamurugan, L.
Saraswathy, V.
Kim, S.-H.
Ann, K.Y. Reliability of Galvanostatic Pulse Technique in Assessing the Corrosion Rate of Rebar in Concrete Structures: Laboratory vs Field Studies. KSCE J. Civ. Eng. 2010, 14, 867–877. [Google Scholar] [CrossRef]
Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete
ASTM C1876–19
ASTM: West Conshohocken, PA, USA, 2012.
Nikoo, M.
Sadowski, Ł.
Nikoo, M. Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings 2017, 7, 160. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure—Galvanostatic pulse method. In Proceedings of the 26th International Conference Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017
pp. 1425–1431. [Google Scholar]
Raczkiewicz, W. Influence of the Air-Entraining Agent in the Concrete Coating on the Reinforcement Corrosion Process in Case of Simultaneous Action of Chlorides and Frost. Adv. Mater. Sci. 2018, 18, 13–19. [Google Scholar] [CrossRef]
Galva Pulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 28 September 2019).
Anticorrosive Protection in Construction. Concrete and Reinforced Concrete Structures. Classification and Definition of Environments
PN-80/B-01800
Polish Standardization, Measurement and Quality Committee: Warsaw, Poland, 1981
[Antykorozyjne zabezpieczenia w budownictwie. Konstrukcje betonowe i żelbetowe. Klasyfikacja i określenie środowisk in Polish].
Rasheeduzzafar. Influence of Cement Composition on Concrete Durability. ACI Mater. J. 1992, 89, 574–586. [Google Scholar]
Cement Aggregates Concrete. Available online: https://www.gorazdze.pl/pl/system/files_force/assets/document/c2__korozja_chemiczna_betonu.pdf?download=1 (accessed on 28 September 2019).