Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[90650] Rozdział:

2D Theory of Shell-like Tensegrity Structures

w książce:   Recent Developments in the Theory of Shells
ISBN:  978-3-030-17746-1
Wydawca:  Springer
Opublikowano: 2019
Seria wydawnicza:  STRUCTMAT
Liczba stron:  13
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wojciech Gilewski Niespoza "N" jednostki33.00.00  
Paulina Obara orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3320.0011.55  
Anna Al Sabouni-Zawadzka Niespoza "N" jednostki33.00.00  

Grupa MNiSW:  Autorstwo rozdziału w monografii z listy wydawnictw 2019
Punkty MNiSW: 20


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Six-parameter shell theory Tensegrity 



Abstract:

Six-parameter shell theory is proposed for tensegrity-like structures. Continuum model to describe mechanical properties of tensegrity lattices is based on the equivalence of the strain energy with discrete model. Parametric analysis is presented to describe the influence of geometrical properties and the level of self-equilibrated normal forces to the static response of the structure.



B   I   B   L   I   O   G   R   A   F   I   A
1.Pietraszkiewicz, W.: Consistent second approximation to the elastic strain energy in a shell. Z Angew Math. Mech. 59, 206–208 (1979)
Google Scholar
2.Pietraszkiewicz, W.: Finite Rotations and Lagrangean Description in the Non-linear Theory of Shells. Polish Scientific Publishers, Warsaw, Poznań (1979)
Google Scholar
3.Pietraszkiewicz, W., Babur, J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115 (1983)
CrossRefGoogle Scholar
4.Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Nonlinear dynamics of flexible shell structures. Comp. Ass. Mech. Eng. Sci. 9, 341–357 (2002)
Google Scholar
5.Chróścielewski, J., Makowski, J., Pietrasziewicz, W.: Statics and Dynamics of Multifold-shells: Nonlinear Theory and Finite Element Method (in Polish). IFTR Polish Academy of Sciences Press, Warsaw (2004)
Google Scholar
6.Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transition. J. Elast. 74, 67–86 (2004)
CrossRefGoogle Scholar
7.Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)
CrossRefGoogle Scholar
8.Chróścielewski, J., Witkowski, W.: Four-node semi-EAS element in six-field nonlinear theory of shells. Int. J. Numer. Meth. Eng. 68, 1137–1179 (2006)
CrossRefGoogle Scholar
9.Panasz, P., Wiśniewski, K.: Nine-node shell elements with 6 dofs/node based on two-level approximation. Finite Elem. Anal. Des. 44, 784–796 (2008)
CrossRefGoogle Scholar
10.Gilewski, W.: High-precision finite elements on moderately thick shell theory. Ph.D. dissertation. Warsaw University of Technology (1986) Google Scholar
11.Gilewski, W., Al Sabouni-Zawadzka, A., Pełczyński, J.: Physical shape functions in 6-parametre shell theory finite elements. In: Pietraszkiewicz, W., Witkowski, W. (Eds.) Shell Structures: Theory and Applications 4. CRC Press, Boca Raton, London, New York, Leiden (2017)
CrossRefGoogle Scholar
12.Al Sabouni-Zawadzka, A., Kłosowska, J., Obara, P., Gilewski, W.: Continuum model of orthotropic tensegrity plate-like structures with self-stress included. Engng. Trans. 64, 501–508 (2016)
Google Scholar
13.Obara, P., Gilewski, W.: Discrete and equivalent 6-parameter shell approach to simulate mechanical behavior of tensegrity lattices. Solmech 2018, Warsaw, Poland (2018)
Google Scholar
14.Pugh, A.: An Introduction to Tensegrity. University California Press, Berkeley, Los Angeles, London (1976)
Google Scholar
15.Motro, R.: Tensegrity: Structural Systems for the Future. Kogan Page, London (2003)
CrossRefGoogle Scholar
16.Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems. Springer, London (2009)
Google Scholar
17.Al Sabouni-Zawadzka, A., Gilewski, W.: Inherent properties of smart tensegrity structures. Appl. Sci. 8, 787-1-14 (2018)
CrossRefGoogle Scholar
18.Kasprzak, A., Gilewski, W.: 3D Continuum Model of Tensegrity Modules with the Effect of Self-stress. WCCM XI, ECCM V, Barcelona, Spain (2014)
Google Scholar
19.Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solid Struct. 22, 409–422 (1990)
CrossRefGoogle Scholar
20.Lewiński, T.: On algebraic equations of elastic trusses, frames and grillages. J. Theor. Appl. Mech. 39, 307–322 (2001)
Google Scholar
21.Pełczyński, J., Gilewski, W.: An extension of algebraic equations of elastic trusses with self-equilibrated system of forces. ECMM 6, Glasgow, UK (2018)
Google Scholar
22.Green, A.E., Zerna, W.: Theoretical Elasticity. Press, Oxford, UK, Oxford Uni (1968)
Google Scholar
23.Chadwick, P., Vianello, M., Cowin, S.A.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)
CrossRefGoogle Scholar