Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[89380] Artykuł:

The Influence of Hydrated Lime on IT-CY Stiffness Modulus of Foam-Based Asphalt Concrete Compacted at 95 °C

Czasopismo: IOP Conference Series: Materials Science and Engineering   Tom: 471, Zeszyt: 032029, Strony: 1-12
ISSN:  1757-899X
Wydawca:  IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
Opublikowano: 2019
Seria wydawnicza:  IOP Conference Series-Materials Science and Engineering
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Mateusz Iwański orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport50.00.00  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport25.00.00  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejNiespoza "N" jednostkiInżynieria lądowa, geodezja i transport25.00.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 0
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Słowa kluczowe:

wapno hydratyzowane  IT-CY moduł sztywności  beton asfaltowy na podbudowę z asfaltem spienionym 


Keywords:

Hydrated Lime  IT-CY Stiffness Modulus  Foam-Based Asphalt Concrete 



Abstract:

Abstract. For a number of years worldwide, the road construction industry has been seeking new technologies for producing energy-saving asphalt mixtures in order to meet new environmental requirements and laws. Some of these techniques include new classes of mixtures characterized by reduced processing temperatures compared to the conventional Hot Mix Asphalt (HMA) production temperature of 165 °C and paving temperature of approximately 145 °C. These techniques include Half Warm Mix Asphalt (HWMA) mineral mixtures produced with the use of foamed bitumen as a binder at temperatures of about 100 °C and paved at 95 °C. Although generally HWMA mixes are comparable to HMA, depending on the mix, they may suffer from decreased mechanical parameters resulting in a reduced service life of the asphalt pavement. The implemented research program investigated asphalt concrete (AC 8) with foamed bitumen (HWMA) compacted at 95 °C and the control HMA sample produced and compacted at a regular temperature. A typical 50/70 road paving bitumen modified with 0.6% surface active agent SAA (fatty acid amide) was used as the foamed binder, dosed at 5.6% and 6.2% by weight to the mixture. Mineral filler replacement with hydrated lime at 15% and 30% by weight was evaluated. The content of voids in the asphalt mixture was examined. The indirect tensile stiffness modulus (IT-CY) characterizing the durability of the mixture was measured at -10 °C, 0 °C, 10 °C, 20 °C and 25 °C. The results of statistical analysis showed significant correlations between the mix production technology used and the content of foamed bitumen and hydrated lime in terms of the temperature of stiffness modulus testing. As confirmed by the stiffness modulus values, the application of hydrated lime provided the half-warm mix asphalt concrete AC8 produced with foamed bitumen with mechanical properties comparable to those of the HMA mix. 1



B   I   B   L   I   O   G   R   A   F   I   A
[1] M. Iwański. G. Mazurek. “The influence of low-viscosity modifier on viscoelastic behavior of the bitumen at high operational temperatures”. 8th International Conference Environmental Engineering. Procedia Engineering Vol. 1-3. pp. 1097-1102. Vilnius. Lithuania. 2011.
[2] J. Król. K. Kowalski. P. Radziszewski. “Rheological behavior of n-alkane modified bitumen in the aspect of Warm Mix Asphalt technology”. Construction and Building Materials. Vol. 93 (2015). pp. 703-710. DOI.org/10.1016/j.conbuildmat.2015.06.033.
[3] A. Vaitkus. D. Čygas. A. Laurinavičius. Z. Perveneckas. “Analysis and Evaluation of Possibilities for The Use of Warm Mix Asphalt in Lithuania”. The Baltic Journal of Road
and Bridge Engineering. Vol IV. No 2 (2009). pp. 80-86. DOI: 10.3846/1822-427X.2009.4.80-86.
[4] MFC Van De Ven. K.J. Jenkins. JLM. Voskuilen R. Van Den Beemt “ Development of (half-) warm foamed bitumen mixes: State of the art”. International Journal of Pavement Engineering 8(2) (2007) 163-175. DOI: 10.1080/10298430601149635
[5] M. Iwański. G. Mazurek. “Optimization of the Synthetic Wax Content Demonstrated on Bitumen 35/50”. Vol. 56. pp. 414-423. 2012
[6] M. R. D. Hugo Silva. Joel R.M. Oliveira. J. Peralta. Salah E. Zooro. “Optimization of warm mix asphalt using different blends of binders and synthetic paraffin wax contents”. Construction and Building Materials 24 (9) (2010) 1621-1631. DOI:10.1016/j.conbuildmat.2010.02.030
[7] M. Iwański. A. Chomicz-Kowalska. “Evaluation of pavement parameters”. Bulletin of the Polish Academy of Sciences-Technical Science. Bulletin of the Polish Academy of Sciences Technical Sciences. Vol. 63. Issue. 1. pp. 97-105. 2015. DOI.:10.1515/bpasts-2015-0011
[8] A. Chomicz-Kowalska. M. M. Iwański. J. Mrugała. “Basic Performance of Fiber Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced at Low Temperatures with Foamed Bitumen”. IOP Conf. Series: Materials Science and Engineering 245 (2017). DOI:10.1088/1757-899X/245/3/032092
[9] K. J. Jenkins. “Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen”. PhD Dissertation. Department of Civil Engineering. Faculty of Engineering. University of Stellenbosch. Stellebosch. South Africa. 2000.
[10] A. Chomicz-Kowalska. W. Gardziejczyk. M. M. Iwański. “Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete compacted at 95ºC”. 12th International Scientific Conference of Modern Building Materials. Structures and Techniques (MBMST). Vol. 172. pp. 550-559. Vilnius. Lithuania. 2017. DOI:10.1016/j.proeng.2017.02.065
[11] K. J. Jenkins. J.L.A. de Groot. M.F.C Van de Ven. A.A.A. Molenaar. “Half-warm Foamed Bitumen Treatment. A New Process”. Conference on Asphalt pavements for Southern Africa. Victoria Falls. Zimbabwe. 1999
[12] M. Iwański. A. Chomicz-Kowalska. K. Maciejewski. “Application of synthetic wax for improvement of foamed bitumen parameters”. Construction and Building Materials. Vol. 83. pp. 62-69. May 15. 2015. DOI.10.1016/j.conbuildmat.2015.02.060
[13] X. Yu. Y. Wang. T. Luo. “Impacts of water content on rheological properties and performancerelated behaviours of foamed war-mix asphalt”. Construction and Building Materials 48 (2013) pp. 203-209. DOI:10.1016/j.conbuildmat.2013.06.018
[14] A Chomicz-Kowalska. W. Gardziejczyk. M. M. Iwański. „Właściwości betonu asfaltowego AC 8 wytwarzanego w obniżonej temperaturze w technologii asfaltu spienionego. w świetle wymagań WT-2 2010 i WT-2 2014” [Properties of an AC 8 asphalt concrete mix produced in lowered temperaturę with foamed bitumen in scope of the requirements of WT-2 2010 and WT-2 2014]. Drogownictwo Nr 6. 2017. s. 183-193
[15] J. Mrugała. M. M. Iwański. “Resistance to permanent deformation of asphalt concrete with F-T wax modified foamed bitumen”. 7Th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD2015). Vol. 108. pp. 459-466. Krakow. Poland. 2015. DOI:10.1016/j.proeng.2015.2015.06.171
[16] P. Buczyński. M. Iwański. “Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers”. IOP Conf. Series: Materials Science and Engineering. Vol. 245.(2017). DOI:10.1088/1757-899X/245/3/032042
[17] A. K. Das. S. D. Singh. “Investigation of rutting. facture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers”. Construction and Building Materials. Vol.:141. pp.: 442-452. DOI: 10.1016/j.conbuidmat.2017.03.032
[18] D. Lesuer. J. Petit. H-J. Ritter. “The mechanism of hydrated lime modification of asphalt mixtures: a state-of-the-art review”. Road Materials and Pavement Design.2012. Vol. 14. No.1. pp.1-16
[19] P. Jaskuła. “The effectiveness of hydrated lime as asphalt concrete additive”. Foundations of Civil and Environmental Engineering. 2007. vol. 10. pp. 99-109
[20] C. Gorkem. B. Sengoz. “Predicting stropping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime”. Construction and Building Materials. Vol. 23. pp. 2227-2236. 2009. DOI:10.1016/j.conbuildmat.2008.12.001
[21] M. Iwański. G. Mazurek. “Hydrated lime as the anti-aging bitumen agent”. 11th International Scientific Conference of Modern Building Materials. Structures and Techniques (MBMST). Vol. 53. pp. 424-432. Vilnius. Lithuania. 2013. DOI:10.1016/j.proeng.2013.04.055
[22] A. K. Das. D. Singh. “Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic”. Journal of Materials in Civil Engineering. Vol.: 30 Issue: 3. DOI: 10.1061/(ASCE)MT.1943-5533.0002196
[23] J. Judycki. P. Jaskuła. M. Pszczoła. J. Alenowicz. B. Dołżycki. M. Jaczewski. D. Ryś. M. Stienss. „Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych” [Catalogue of typical flexible and semi-rigid pavement constructions]. GDDKiA. 2014.
[24] WT-2. Technical Guidelines 2: Asphalt pavements for national roads. Part I: Asphalt mixes. General Directorate for National Roads and Motorways. Poland. Warsaw. 2014.