Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[88800] Artykuł:

The Impact of Node Location Imperfections on the Reliability of Single-Layer Steel Domes

(Wpływ niedoskonałości lokalizacji węzłów na niezawodność jednowarstwowych kopuł stalowych.)
Czasopismo: Applied Sciences - Basel   Tom: 9, Zeszyt: 2742, Strony: 1-16
ISSN:  2076-3417
Opublikowano: Lipiec 2019
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niezaliczony do "N"Inżynieria lądowa, geodezja i transport5050.0050.00  
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5050.0050.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

single-layer lattice domes  reliability index  elasticity index  first-order reliability method 



Abstract:

This study is an attempt to assess the effect of node location imperfections on the reliability dome. The analysis concerns a single-layer steel lattice dome that is very sensitive to node snap-through. The load-displacement path of the structure was determined using the program, Finite Element Method-Krata. To determine the failure probability, reliability index, and elasticity index, the first-order reliability method approximation method was employed. The reliability analysis was conducted with Numpress Explore software, developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw. In this paper, it is shown how large differences in the assessment of the safety of a structure can appear when we incorrectly estimate the standard deviation of the random variable responsible for the imperfections of node locations.



B   I   B   L   I   O   G   R   A   F   I   A
1. Madsen, H.O., Krenk, S., Lind, N.C. Methods of Structural Safety Prentice-Hall: Upper Saddle River, NJ, USA, 1986.
2. Melchers, R.E. Structural Reliability Analysis and Predictions, 2nd ed. Wiley: Hoboken, NJ, USA, 1999.
3. Ditlevsen, O. Madsen, H.O. Structural Reliability Methods Wiley: Hoboken, NJ, USA, 1996.
4. Thoft-Christensen, P. Baker, M.J. Structural Reliability Theory and its Applications Springer-Verlag: Berlin, Germany, 1982.
5. Augusti, G. Baratta, A. Casciati, F. Probabilistic Methods in Structural Engineering Chapman and Hall:London, UK, 1984.
6. Harr, M.E. Reliability-Based Design in Civil Engineering McGraw-Hill: New York, NY, USA, 1987.
7. Nowak, A.S. Collins, K.R. Reliability of Structures McGraw-Hill Higher Education: New York, NY, USA, 2000.
8. Hasofer, A.M. Lind, N.C. Exact and invariant second moment code format J. Engin. Mech. Div. ASCE 1974, 100, 111–121.
9. Cornell, C.A. A probability-based structural code. J. Am. Concr. Inst. 1969, 66, 974–985.
10. Rackwitz, R., Fiessler, B., Structural reliability under combined random load sequences. Comput. Struct. 1978, 9, 489–494.
11. Hohenbichler, M.
Rackwitz, R. Non-normal dependent vectors in structural safety. J. Engin. Mech. Div. ASCE 1981, 107, 1227–1238.
12. Rosenblatt, M. Remarks on a Multivariate Transformation. Ann. Math. Stat. 1952, 23, 470–472.
13. Der Kiureghian, A. Liu P.L. Structural reliability under incomplete probability information. J. Eng. Mech. ASCE 1986, 112, 85–104.
14. Hisada, T. Nakagiri, S. Role of the stochastic finite element method in structural safety and reliability. In Proceedings of the 4th International Conference on Structural Society Safety Reliability, Cobe, Japan, 27–29 May 1985
pp 385–394.
15. Liu, W.K. Mani, A. Belytschko, T. Finite elements methods in probabilistic mechanics. Probabilistics Eng. Mech. 1987, 2, 201–213.
16. Shinozuka, M. Basic issues in stochastic finite element analysis. In Proceedings of the Fifth International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, University of British Columbia, Vancouver, BC, Canada, 25–29 May 1987
pp 507–520.
17. Li, C.C. der Kiureghian, A. Optimal discretization of random fields. J. Engin. Mech. ASCE 1993, 119, 1136–1154.
18. Matthies, H.G. Brenner, C.E. Bucher, C.G. Guedes Soares, C. Uncertainties in probabilistic numerical analysis of structures and solids—Stochastics finite elements. Struct. Saf. 1997, 19, 283–336.
19. Pellissetti, M.F. Schuëller, G.I. On general purpose software in structural reliability—An overview. Struc. Saf. 2006, 28, 3–16.
20. Reh, S. Beley, J.D. Mukherjee, S. Khor, E.H. Probabilistic finite element analysis using ANSYS. Struct. Saf. 2006, 28, 17–43.
21. Der Kiureghian, A. Haukaas, T. Fujimura, K. Structural reliability software at the University of California, Berkeley. Struct. Saf. 2006, 28, 44–67.
22. Schuëller, G.I. Pradlwarter, H.J. Computational stochastic structural analysis (COSSAN)-software tool. Struct. Saf. 2006, 28, 68–82.
23. Thacker, B.H. Riha, D.S. Fitch, S.K.H. Huyse, L.J. Pleming, J.B. Probabilistic engineering analysis using the NESSUS software. Struct. Saf. 2006, 28, 83–107.
24. Gollwitzer, S. Kirchgabner, B. Fischer, R. Rackwitz, R. PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis. Struct. Saf. 2006, 28, 108–129.
25. Lemaire, M. Pendola phimeca-soft M. Struct. Saf. 2006, 28, 130–149.
26. Tvedt, L. Proban-probabilistic analysis. Struct. Saf. 2006, 28, 150–163.
27. Wu, Y.T. Shin, Y. Sues, R.H. Cesare, M.A. Probabilistic function evaluation system (ProFES) for reliabilitybased design. Struct. Saf. 2006, 28, 164–195.
28. Lin, H.Z. Khalessi, M.R. General outlook of UNIPASSV5.0: A general-purpose probabilistic software system. Struct. Saf. 2006, 28, 196–216.
29. Schuëller, G.I. Stix, R. A critical appraisal of methods to determine failure probabilities. Struct. Saf. 1987, 4, 293–309,
30. Hohenbichler, M. Rackwitz, R. Improvement of second-order reliability estimates by importance sampling. J. Engin. Mech. ASCE 1988, 114, 2195–2199.
31. Doliński, K. First-order second-moment approximation in reliability of structural systems: Critical review and alternative approach. Struct. Saf. 1983, 1, 211–231.
32. Rubinstein, R.Y. Simulation and the Monte Carlo Method Wiley: Hoboken, NJ, USA, 1981.
33. Obara, P. Radoń, U. Zabojszcza, P. Mochocki, W. Effects of single-layer truss dome geometry on critical load capacity. Struct. Env. 2017, 3, 152–164.
34. Zabojszcza, P. Radoń, U. Obara, P. Impact of single-layer dome modelling on the critical load capacity. Matec. Web Conf. 2018, 219, doi:10.1051/matecconf/201821902017.
35. Zabojszcza, P. Radoń, U. Effect of increased density of nodes in geodesic dome on its critical load capacity. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, doi:10.1088/1757-899X/471/5/052051.
36. Riks, E. The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 1972, 39, 1060–1065.
37. Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 1979, 15, 529–551.
38. Zhao, C. Zhao, Y. Ma, J. The stability of new single-layer combined lattice shell based on aluminum alloy honeycomb panels. Appl. Sci. 2017, 7, 1150.
39. Galambos, T.V. Guide to Stability Design for Metal Structures Wiley and Sons: Hoboken, NJ, USA, 1998.
40. Thompson, J.M.T. Hunt, G.W. A General Theory of Elastic Stability Wiley and Sons: Hobooken, NJ, USA, 1973.
41. Pignatero, M. Rizzi, N. Luongo, A. Stability, Bifurcation and Postcritical Behavior of Elastic Structures Elsevier: Amsterdam, The Netherlands, 1991.
42. Stocki, R. Kolanek, K. Knabel, J. Tauzowski, P. FE based structural reliability analysis using STAND environment. Comput. Assist. Mech. Eng. Sci. 2009, 16, 35–58.
43. Lasota, R. Stocki, R. Tauzowski, P. Szolc, T. Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 413–422.
44. Szolc, T. Tauzowski, P. Stocki, R. Knabel, J. Damage identification in vibrating rotor-shaft systems by efficient sampling approach. Mech. Syst. Signal. Process. 2009, 23, 1615–1633.
45. Stocki, R. Tauzowski, P. Knabel, J. Reliability analysis of a crashed thin-walled s-rail accounting for random spot weld failures. Int. J. Crashworthiness 2008, 13, 693–706, doi:10.1080/13588260802055213.
46. European Committee for Standardization. Basis of Structural Design Technical Report PN-EN-1990:2002 European Committee for Standardization: Brussels, Belgium, 2005.
47. Schittkowski, K. The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function, part 1: Convergence analysis. Numer. Math. 1982, 38, 83–114.
48. Schittkowski, K. Zillober, C. Zotemantel, R. Numerical comparison of nonlinear programming algorithms for structural optimization. Struct. Multidiscip. Optim. 1994, 7, 1–19.
49. Budnick, F.S. Finite Mathematics with Applications McGraw-Hill: New York, NY, USA, 1985.
50. Radoń, U. Reliability analysis of misses truss. Arch. Civ. Mech. Eng. 2011, 11, 723–738.
51. Radoń, U. Dudzik, A. The evaluation of algorithms for determination of the reliability index. Arch. Civ. Eng. 2015, 3, 133–147.
52. Radoń, U. Dudzik, A. The Reliability Assessment of a Steel Industrial Hall, Advances in Mechanics: Theoretical, Computational and nterdisciplinary Issues Taylor & Francis Group: London, UK, 2016 pp. 163–166.
53. Available online: http://numpress.ippt.pan.pl/opis.html (accessed on 4 June 2019).