Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[87690] Artykuł:

The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach

(Wpływ charakterystyk zlewni i warunków atmosferycznych na zawartość metali ciężkich w wodach deszczowych - podejście data mining)
Czasopismo: Applied Sciences   Tom: 9(11), Zeszyt: 2210, Strony: 1-15
ISSN:  2076-3417
Opublikowano: Maj 2019
Liczba arkuszy wydawniczych:  1.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jarosław Górski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Bartosz Szeląg orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Katarzyna Górska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka2525.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

stormwater  heavy metals  artificial neural network method 



Abstract:

The dynamics of processes affecting the quality of stormwater removed through drainage systems are highly complicated. Relatively little information is available on predicting the impact of catchment characteristics and weather conditions on stormwater heavy metal (HM). This paper
reports research results concerning the concentrations of selected HM (Ni, Cu, Cr, Zn, Pb and Cd) in stormwater removed through drainage system from three catchments located in the city of Kielce, Poland. Statistical models for predicting concentrations of HM in stormwater were developed based on measurement results, with the use of artificial neural network (ANN) method (multi-layer perceptron). Analyses conducted for the study demonstrated that it is possible to use simple variables to characterise catchment and weather conditions. Simulation results showed that for Ni,
Cu, Cr, Zn and Pb, the selected independent variables ensure satisfactory predictive capacities of the models (R2 > 0.78). The models offer considerable application potential in the area of development plans, and they also account for environmental aspects as stormwater and snowmelt water quality affects receiving waters.



B   I   B   L   I   O   G   R   A   F   I   A
1. Ali, S.A. Rodriguez, F. Bonhomme, C. Chebbo, G. Accounting for the Spatio-Temporal Variability of Pollutant Processes in Stormwater TSS Modeling Based on Stochastic Approaches. Water 2018, 10, 1773, doi:10.3390/w10121773.
2. Tsai, L.Y. Chen, C.F. Fan, C.H. Lin, J.Y. Using the HSPF and SWMM Models in a High Pervious Watershed and Estimating Their Parameter Sensitivity. Water 2017, 9, 780, doi:10.3390/w9100780.
3. Cho, J.H. Lee, J.H. Multiple Linear Regression Models for Predicting Nonpoint-Source Pollutant Discharge from a Highland Agricultural Region. Water 2018, 10, 1156, doi:10.3390/w10091156.
4. Zawilski, M. Sakson, G. Assessment of total suspended solid emission discharged via storm sewerage system from urban areas (in Polish). Ochr. Sr. 2013, 35, 33–40.
5. Yang, L. Zhou, X. Wang, Z. Zhou, Y. Cheng, S. Xu, P. Gao, X. Nie, W. Wang, X. Wang, W. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmos. Environ. 2012, 55, 506–514, doi:10.1016/j.atmosenv.2012.02.029.
6. Majewski, G. Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92, doi:10.1007/s00704-015-1494-y.
7. Garcia, J.T. Espin-Leal, P. Vigueras-Rodriguez, A. Carrillo, J.M. Castillo, L.G. Synthetic pollutograph by prediction indices: An evaluation in several urban sub-catchnents. Sustainability 2018, 10, 2634, doi:10.3390/su10082634.
8. Szeląg, B. Barbusiński, K. Studziński, J. Activated sludge process modelling using selected machine learning techniques. Desalin. Water Treat. 2018, 117, 78–87, doi:10.5004/dwt.2018.22095.
9. Bąk, Ł. Szeląg, B. Sałata, A. Studziński, J. Modeling of Heavy Metal (Ni, Mn, Co, Zn, Cu, Pb, and Fe) and PAH Content in Stormwater Sediments Based on Weather and Physico-Geographical Characteristics of the Catchment-Data-Mining Approach. Water 2019, 11, 626, doi:10.3390/w11030626.
10. May, D.B. Sivakumar, M. Prediction of heavy metal concentrations in urban stormwater. Water Environ. J. 2009, 23, 247–254, doi:10.1111/j.1747-6593.2008.00138.x.
11. Pochwat, K. The use of artificial neural networks for analyzing the sensitivity of a retention tank. In Proceedings of the VI International Conference of Science and Technology INFRAEKO Modern Cities— E3S Web of Conferences 45, Krakow, Poland, 7–8 June 2018
p. 00066, doi:10.1051/e3sconf/20184500066.
12. Mounce, S.R. Shepherd, W. Sailor, G. Shucksmith, J. Saul, A.J. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Sci. Technol. 2014, 69, 1326–1333, doi:10.2166/wst.2014.024.
13. Singh, K.P. Basant, A. Malik, A. Jain, G. Artificial neural network modeling of the river water quality—A case study. Ecol. Model. 2009, 220, 888–895, doi:10.1016/j.ecolmodel.2009.01.004.
14. Sarkar, A. Pandey, P. River Water Quality Modelling Using Artificial Neural Network Technique. Aquat. Procedia 2015, 4, 1070–1077, doi:10.1016/j.aqpro.2015.02.135.
15. Bąk, Ł. Górski, J. Górska, K. Szeląg, B. Suspended Solids and Heavy Metals Content of Selected Rainwater Waves in an Urban Catchment Area: A Case Study (in Polish). Ochr. Sr. 2012, 34, 49–52.
16. Górski, J. Szeląg, B. Bąk, Ł. The application of SWMM software for the evaluation of stormwater treatment plant operation (in Polish). Woda Środ. Obsz. Wiej. 2016, 16, 17–35.
17. PN-EN ISO 10523:2012. Water Quality. Determination pH Value ISO: Geneva, Switzerland, 2012. (In Polish)
18. PN-EN ISO 11885:2009. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
ISO: Geneva, Switzerland, 2009. (In Polish)
19. Arbeitsblatt DWA-A 118. Hydraulische Bemessung und Nachweis von Entwässerungssystemen Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall: Hennef, Germany, 2006.
20. Szeląg, B. Kiczko, A. Studziński, J. Dąbek, L. Hydrodynamic and probabilistic modelling of storm overflow discharges. J. Hydroinform. 2018, 10, 1–11, doi:10.2166/hydro.2018.005.
21. Box, G.E.P. Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B 1964, 26, 211–252.
22. Murphy, L.U. Quantifying Spatial and Temporal Deposition of Atmospheric Pollutants in Runoff from Different Pavement Types. Doctor’s Thesis, University of Canterbury Christchurch, Christchurch, New Zealand, 2015.
23. Rutkowski, L. Artificial Intelligence Methods and Techniques PWN: Warszawa, Poland, 2006. (In Polish).
24. Hecht-Nielsen, R. Kolmogorov’s Mapping Neural Network Existence Theorem. In Proceedings of the IEEE First Annual International Conference on Neural Networks, San Diego, CA, USA, 21–24 June, 1987.
25. Demuth, H. Beale, M. Neural Network Toolbox. For Use with MATLAB The MathWorks: Natick, MA, USA, 2002.
26. Fach, S. Sitzenfrei, R. Rauch, W. Assessing the relationship between water level and combined sewer overflow with computational fluid dynamics. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31 August–5 September 2008.
27. Królikowski, A. Garbarczyk, K. Gwoździej-Mazur, J. Butarewicz, A. Sediments Formed in Stormwater Sewer Facilities Polish Academy of Sciences: Lublin, Poland, 2005. (In Polish).
28. Górska, K. Sikorski, M. Górski, J. Occurrence of heavy metals in rain wastewater on example of urban catchment in Kielce. Ecol. Chem. Eng. A 2013, 20, 961–974, doi:10.2428/ecea.2013.20(09)088.
29. Rogula-Kozłowska, W. Majewski, G. Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240, doi:10.1007/s10661-015-4450-5.
30. Murphy, L.U. Cochrane, T.A. O’Sullivan, A. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics. Sci. Total Environ. 2015, 508, 206–213, doi:10.1016/j.scitotenv.2014.11.094.
31. Hong, N. Zhu, P. Liu, A. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation. Environ. Pollut. 2017, 253, 821–828, doi:10.1016/j.envpol.2017.08.056.
32. Djukić, A. Lekić, B. Rajaković-Ognjanović, V. Veljović, D. Vulić, T. Djolić, M. Naunovic, Z. Despotović, J. Prodanović, D. Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J. Environ. Manag. 2016, 168, 104–110, doi:10.1016/j.jenvman.2015.11.035.
33. Sakson, G. Zawilski, M. Badowska, E. Brzezińska, A. Stormwater pollution as the basis of choice the method of their management. J. Civ. Eng. Environ. Archit. 2014, 31, 253–264.
34. Lundy, L. Ellis, J.B. Revitt, D.M. Risk prioritisation of stormwater pollutant sources. Water Res. 2012, 46, 6589–6600, doi:10.1016/j.watres.2011.10.039.
35. Gasperi, J. Kafi-Benyahia, M. Lorgeoux, C. Moilleron, R. Gromaire, M.C. Chebbo, G. Wastewater quality and pollutant loads in combined sewers during dry weather periods. Urban Water J. 2008, 5, 305–314, doi:10.1080/03087290802201415.
36. Zgheib, S. Moilleron, R. Chebbo, G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Res. 2012, 46, 6683–6692, doi:10.1016/j.watres.2011.12.012.
37. Gnecco, I. Berretta, C. Lanza, L.G. La Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 2005, 77, 60–73, doi:10.1016/j.atmosres.2004.10.017.
38. Revitt, D.M. Lundy, L. Coulon, F. Fairley, M. The sources, impact and management of car park runoff pollution: A review. J. Environ. Manag. 2014, 146, 552–567, doi:10.1016/j.jenvman.2014.05.041.
39. Gan, H. Zhuo, M. Li, D. Zhou, Y. Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China. Environ. Monit. Assess. 2008, 140, 147–159, doi:10.1007/s10661-007-9856-2.
40. Brombach, H. Fuchs, S. Datenpool Gemessener Verschmutzungskonzentrationen von Trocken—und Regenwetterabflüssen in Misch—und Trennkanalisationen ATV-DVWK—Forschungsfonds, Projekt 1-01 GFA: Hennef, Germany, 2001.
41. Charters, F.J. Cochrane, T.A. O’Sullivan, A. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Sci. Total Environ. 2016, 550, 265–272, doi:10.1016/j.scitotenv.2016.01.093.
42. Valtanen, M. Sillanpää, N. Setälä, H. The Effects of Urbanization on Runoff Pollutant Concentrations, Loadings and Their Seasonal Patterns Under Cold Climate. Water Air Soil Pollut. 2014, 225, 1977, doi:10.1007/s11270-014-1977-y].
43. Sternbeck, J. Sjodin, A. Andreasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744, doi:10.1016/S1352-2310(02)00561-7.
44. Bergbäck, B. Johansson, K. Mohlander, U. Urban Metal Flows—A Case Study of Stockholm. Review and Conclusions. Water Air Soil Pollut. Focus 2001, 1, 3–24, doi:10.1023/A:1017531532576.
45. Suresh, G. Sutharsan, P. Ramasamy, V. Venkatachalapathy, R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments India. Ecotoxicol. Environ. Saf. 2012, 84, 117–124, doi:10.1016/j.ecoenv.2012.06.027.
46. Gunawardena, J. Ziyath, A.M. Egodawatta, P. Ayoko, G.A. Goonetilleke, A. Sources and transport pathways of common heavy metals to urban road surfaces. Ecol. Eng. 2015, 77, 98–102, doi:10.1016/j.ecoleng.2015.01.023.
47. Rocher, V. Azimi, S. Gasperi, J. Beuvin, L. Mulle, M. Moilleron, R. Chebbo, G. Hydrocarbons and metals in atmospheric deposition and roof runoff in central Paris. Water Air Soil Pollut. 2004, 159, 67–86, doi:10.1023/B:WATE.0000049165.12410.98.
48. Wicke, D. Cochrane, T.A. O’Sullivan, A.D. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. J. Environ. Monit. 2012, 14, 209–216, doi:10.1039/c1em10643k.