Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[84840] Artykuł:

Research on thermal resistance Rthj-c of high power semiconductor light sources

Czasopismo: AIP Conference Proceedings 2078, 020047 (2019)   Tom: 2078, Strony: 1-7
ISSN:  0094-243X
ISBN:  978-0-7354-1806-6
Wydawca:  AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
Opublikowano: Marzec 2019
Seria wydawnicza:  AIP Conference Proceedings
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Antoni Różowicz orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne25.00.00  
Henryk Wachta Niespoza "N" jednostki25.00.00  
Marcin Leśko Niespoza "N" jednostki25.00.00  
Krzysztof Baran Niespoza "N" jednostki25.00.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 0
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Lighting technology 



Abstract:

The article presents the results of Rthj-c thermal resistance research for selected high power semiconductor
light source. The thermal resistance between the junction and the casing of semiconductor light sources is one of the key
parameters determining the correct junction temperature of the LED sources and its influence on the basic light and
electric parameters of semiconductor light sources. The research were carried out in accordance with the international
standard JEDEC JESD51-14 using the Mentor Graphics measuring equipment.



B   I   B   L   I   O   G   R   A   F   I   A
1. K. Kijkanjanapaiboon, T. Kretschmer, L. Chen, X. Fan, and J. Zhou, “LED’s Luminous Flux Lifetime
Prediction Using a Hybrid Numerical Approach,” in 16th International Conference on Thermal, Mechanical
and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, (Budapest, 2015),
pp. 1–8
2. H. Ye, M. Mihailovic, C. Wong, H. Van Zeijl, A. Gielen, G. Zhang, and P. Sarro, Appl. Therm. Eng. 52, 2,
353–359 (2013).
3. J. Park, M. Shin, and C. C. Lee, Opt. Lett. 29, 22, 2656–2658 (2004).
4. J. Ellis and G. Pickard, “A method of characterizing the thermal resistance of high power LEDs,” in 33rd
Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), (San Jose, 2017), pp. 290–295.
5. K. Byung-Ho and M. Cheol-Hee, IEEE T. Comp. Pack. Man. 2, 11, pp. 1832–1837 (2012).
6. JEDEC STANDARD, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance
Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, JESD51-14, (2010).
7. JEDEC STANDARD, Implementation of electrical test method for the measurement of real thermal resistance
and impedance of LEDs with exposed cooling, JESD51-51, (2012).
8. X. Ma, L. Wu, S. Dai, and K. Bai, “Thermal analysis for high-power LED down-light,” in International
Conference on Electronics, Communications and Control, ICECC 2011, (USA, 2011), pp. 1174–1177.
9. Z. Huaiwen, Y. Hua, Y. Xiaoyan, W. Junxi, and L. Jinmin, “The thermal simulation of high power density
LED light source,” in 14th China International Forum on Solid State Lighting: International Forum on Wide
Bandgap Semiconductors, (China, 2017), pp. 175–178
10. M. Yurtseven, S. Mete, and S. Onaygil, Lighting Res. Technol. 48, 943–965 (2015).
11. K. Górecki and P. Ptak, “Simple method of measuring photometric and radiometry parameters of power
LEDs,” in Baltic URSI Symposium 2018, (Poznań, 2018), pp. 121–124.
12. GL Optic Company, https://gloptic.com/.
13. T3Ster site, https://www.mentor.com/products/mechanical/micred/t3ster/.
14. V. Szekely, Microelectron. J. 28, 277–292 (1997).