Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[66560] Artykuł:

On The Parameters of Geometric Constraints for Cracked Plates under Tension – Three-Dimensional Problems

Czasopismo: International Journal of Applied Mechanics and Engineering   Tom: 22, Zeszyt: 4, Strony: 901-919
ISSN:  2353-9003
Opublikowano: 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Marcin Graba orcid logo WMiBMKatedra Technologii Mechanicznej i Metrologii*Takzaliczony do "N"Inżynieria mechaniczna10015.0015.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


DOI LogoDOI     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

naprężenia  pęknięcie  pękanie płyt 


Keywords:

CCT  DENT  geometric constraints  stress triaxiality parameter  Q stresses  normal stresses  crack 



Abstract:

This paper provides a comparative analysis of selected parameters of the geometric constraints for cracked plates subjected to tension. The results of three-dimensional numerical calculations were used to assess the distribution of these parameters around the crack front and their changes along the crack front. The study also involved considering the influence of the external load on the averaged values of the parameters of the geometric constraints as well as the relationship between the material constants and the level of the geometric constraints contributing to the actual fracture toughness for certain geometries.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Hutchinson J.W. (1968): Singular Behavior at End of Tensile Crack in Hardening Material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.13-31.
[2] Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near crack tip in power-law hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.1-12.
[3] Guo W. (1993a): Elastoplastic three dimensional crack border field – I. Singular structure of the field. – Engineering Fracture Mechanics, vol.46, No.1, pp.93-104.
[4] Guo W. (1993b): Elastoplastic three dimensional crack border field – II. Asymptotic solution for the field. – Engineering Fracture Mechanics, vol.46, No.1, pp.105-113.
[5] Guo W. (1995), Elastoplastic three dimensional crack border field – III. Fracture parameters. – Engineering Fracture Mechanics, vol.51, No.1, pp.51-71.
[6] Graba M. (2007): The description of the stress fields for elastic-plastic materials – 3D issues. – Proceeding of the XI National Fracture Mechanics Conference, Kielce - Cedzyna, 8-12.09.2007., printed abstract - pp.33-34, electronic version of the article - 28 pages (in Polish).
[7] Graba M. (2009): Numerical analysis of the mechanical fields near the crack tip in the elastic-plastic materials. 3D problems. – PhD dissertation, Kielce University of Technology - Faculty of Mechatronics and Machine Building, 387 pages, Kielce 2009 (in Polish).
[8] Neimitz A. and Graba M. (2008): Analytical-numerical Hybrid Method to Determine the Stress Field in Front of the Crack in 3D Elastic-plastic Structural Elements. – Proceeding of the XVII European Conference of Fracture (ECF), Brno – Czech Republic, 1-4.09-2008., electronic version of the article on CD, abstract – book of abstracts p.85.
[9] O’Dowd N.P. and Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of fields. – J. Mech. Phys. Solids, vol.39, No.8, pp.989-1015.
[10] O’Dowd N.P. and Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture applications. – J. Mech. Phys. Solids, vol.40, No.5, pp.939-963.
[11] Graba M. (2012), Proposal of the three-parametric fracture criterion for brittle materials. – The Mechanical Review, No.2, pp.24-31 (in Polish).
[12] Neimitz A., Dzioba I., Molasy R. and Graba M. (2004): The influence of the constraints on fracture toughness for brittle materials. – Proceeding of the XX Symposium of the Fatigue and Fracture Mechanics, Bydgoszcz-Pieczyska, 27-30.04.2004r., pp.265-272 (in Polish).
[13] Neimitz A. and Gałkiewicz J. (2006): Fracture toughness of structural components: influence of constraint. – International Journal of Pressure Vessels and Piping, vol.83, pp.42-54.
[14] Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. – Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.269-289.
[15] Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. – Journal of Theoretical and Applied Mechanics, vol.50, No.1, pp.23-46.
[16] Neimitz A., Dzioba I., Graba M. and Okrajni J. (2008): The assessment of the strength and safety of the operation high temperature components containing crack. – Kielce University of Technology Publishing House, Kielce, 428 pages (in Polish).
[17] McClintock F.A. (1968): A criterion for ductile fracture by growth of holes. – Journal of Applied Mechanics, vol.4, pp.363-371.
[18] Rice J.R. and Tracey D.M. (1971): On the ductile enlargement of voids in triaxial stress fields. – Journal of the Mechanics and Physics of Solids, vol.17, pp.201-217.
[19] Henry B.S., Luxmoore A.R. and Sumpter J.D.G. (1996): Elastic-plastic fracture mechanics assessment of low constraint aluminum test specimens. – International Journal of Fracture, No.81, pp.217-234.
[20] Kim Y., Chao Y.J. and Zhu X.K. (2003): Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens. – International Journal of Solids and Structures, vol.40, pp.6267-6284.
[21] Kim Y., Zhu X.K. and Chao Y.J. (2001): Quantification of constraint on elastic-plastic 3D crack front by the JA2 three-term solution. – Engineering Fracture Mechanics, vol.68, pp.895-914.
[22] FITNET (2006): FITNET Report, (European Fitness-for-service Network). – Edited by M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers, Contract No. G1RT-CT-2001-05071, 2006.
[23] Sumpter J.D.G. and Forbes A.T. (1992), Constraint Based Analysis of Shallow Cracks in Mild Steel. – TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics Test and Application, M.G. Dawes, Ed., Cambridge, UK, paper 7.
[24] ADINA 8.8 (2011a): ADINA: User Interface Command Reference Manual – Volume I: ADINA Solids & Structures Model Definition. – Report ARD 11-2, ADINA R&D, Inc., 2011.
[25] ADINA 8.8 (2011b), ADINA: Theory and Modeling Guide – Volume I: ADINA Solids & Structures. – Report ARD 11-8, ADINA R&D, Inc., 2011.
[26] Graba M. (2013): Numerical verification of the limit load solutions for single edge notch specimen in tension. – Archives of Civil and Mechanical Engineering, vol.13, No.1, pp.45-56.
[27] Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension – Journal of Theoretical and applied mechanics, vol.51, No.2, pp.349-362.