Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[57180] Artykuł:

A new concept of the mechanism of tribocatalytic reactions induced by mechanical forces

Czasopismo: Tribology International   Tom: 107, Strony: 144-151
ISSN:  0301-679X
Opublikowano: 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Czesław Kajdas Niespoza "N" jednostki33.00.00  
Andrzej Kulczycki Niespoza "N" jednostki33.00.00  
Dariusz Ozimina orcid logo WMiBMKatedra Mechaniki**Niespoza "N" jednostkiInżynieria mechaniczna3335.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 35


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Triboreactions  Energy distribution  Boundary lubrication 



Abstract:

The aim of this paper is to present a new approach to the mechanism of tribocatalytic reactions induced by mechanical forces. The new concept is based on the authors ’ previous research, which reveals that there exists a relationship between the modi fi ed coe ffi cient of reagent reactivity α i , the ratio of mechanical forces acting on a tribological system and a change in the internal energy of a lubricant (including a thin boundary layer).
α i =(L – L 0 )/ A exp[-E a /(RT+ ε )] [(e 0 ) cos (k 2 L +k 3 )] t and 1/ A exp[-E a /(RT+ ε )] [(e 0 ) cos (k 2 L +k 3 )] t = C
The paper has been divided into two parts. Part One provides a theoretical analysis of the distribution of energy between a solid surface and the molecules of a lubricant during a tribological process. This part concludes with the formulation of three hypotheses: fi rst, that the tribocatalyst transforms mechanical energy into a fl ux of electrons and/or photons, which provide additional amounts of energy to the molecules of the reagents, secondly, that the function C describes a wave of energy understood as a wave-like change in the internal energy of a tribological system caused by an increase in the applied load and, thirdly, that a chemical reaction can be initiated when i) the molecules of the reagent are supplied with energy equal to the activation energy E a and ii) the energy is supplied by a su ffi ciently high fl ux. Part Two discusses the empirical data that initially con fi rm the above hypotheses. The evidence combines i) the experimental results concerning the emission of electrons during friction with ii) the test results obtained for a number of lubricating oils using the Timken apparatus and method.



B   I   B   L   I   O   G   R   A   F   I   A
[1] D. Ozimina, Maintenance of tribological systems, Kielce University of Technology,, Kielce, 2013 Monograph 48 .
[2] D. Ozimina, The assessment of ZnDTP tribochemical reactivity by electrochemical simulation, Lubric Sci 13 ( 1 ) (2000) 45 – 57.
[3] K. Nakayama, N. Suzuki, H. Hashimoto, Triboemission of charged particles and photons from solid surfaces during frictional damage, J Phys D Appl Phys 25 (1992) 303 – 308.
[4] D. Ozimina, J. Kowalczyk, M. Madej, Ł. Nowakowski, J. Kasińska, Biodegradable cutting fluids in tribological systems with diamond-like coatings, Mechanik 8 – 9 (2015) 149 – 158.
[5] A. Ramesh, W. Akram, S.P. Mishra, A.H. Cannon, A.A. Polycarpou, W.P. King, Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication, Tribol Int 57 (2013) 170 – 176.
[6] A. Kulczycki, The correlation between results of di ff erent model friction tests in terms of an energy analysis of friction and lubrication, Wear 103 (1985) 67 – 75.
[7] C.K. Kajdas, A. Kulczycki, A new idea of the in fl uence of solid materials on kinetics of chemical reactions, Mater Sci Poland 26 (2008) 787 – 796.
[8] M.A. Vannice, C. Sudhakar, A model for the metal-support e ff ect enhancing carbon monoxide hydrogenation rates over platinum-titania catalysts, J Phys Chem 88 (12) (1984) 2429 – 2432 .
[9] B. Vengudusamy, J.H. Green, G.D. Lamb, H.A. Spikes, Tribological properties of tribo fi lms formed from ZDDP in DLC/DLC and DLC/steel contacts, Tribol Int 44 (2011) 165 – 174.
[10] M. Kalin, M. Polajnar, The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils, Tribol Int 66 (2013) 225 – 233.
[11] K. Tkacova, Mechanical activation of minerals, Elsevier, Amsterdam, 1989 .
[12] Kajdas C., Hiratsuka K. Tribochemistry, Tribocatalysis, and the Negative-Ion- Radical Action Mechanism. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology 2009
223 (6) 827-848. DOI: 10.1243/ 13506501JET514 [
[13] P. Kar, K. Wang, H. Liang, Force-dominated non-equilibrium oxidation kinetics of tantalum, Electrochim Acta 53 (2008) 5084 – 5091 .
[14] A. Kulczycki, C.K. Kajdas, H.
[15] C.K. Kajdas, A. Kulczycki, K.J. Kurzyd ł owski, G.J. Molina, Activation energy of tribochemical and heterogeneous catalytic reactions, Mater Sci Poland 28 (2010) 523 – 533.
[16] Y. Matsui, S. Aoki, M. Masuko, In fl uence of coexisting functionalized polyalk- ylmethacrylates on the formation of ZnDTP - derived tribo fi lm, Tribol Int 100 (2016) 152 – 161.
[17] C.K. Kajdas, Importance of the triboemission process for tribochemical reaction, Tribol Int 38 (2005) 337 – 353.
[18] C. Kajdas, Importance of anionic reactive intermediates for lubricant component reactions with friction surfaces, Lubric Sci 6 (3) (1994) 203 – 228.
[19] M. Tagawa, M. Mori, N. Ohmae, M. Umeno, S. Takenobu, Tribo- and photo- stimulated exoelectron emission from graphite, Tribol Int 26 (1993) 57 – 60.
[20] J. Le Rouzic, T. Reddyho ff , Spatially resolved triboemission measurements, Tribol Lett 55 (2014) 245 – 252.
[21] Ciniero A., Le Rouzic J., Reddyho ff T. An experimental study of triboemi
[22] Puhan D, Reddyho ff T. An experimental study into the possible e ff ects of triboemission. In: Proceedings of the international tribology conference, 2015, September 16th – 20th, 2015, Tokyo, Japan.
[23] E. Illenberger, Electron-attachment reactions in molecular clusters, Chem Rev 92 (1992) 1589 – 1609.
[24] L. Oster, V. Yaskolko, J. Haddad, Classi fi cation of exoelectron emission mechan- isms, Phys Stat Sol (a) 174 (1999) 431 – 439.
[25] B.C. Kruger, N. Bartels, C. Bartels, A. Kandratsenka, J.C. Tully, A.M. Wodtke, T. Schafer, No vibrational energy transfer on a metal surface: still a challenge to fi rst-principles theory, J Phys Chem C 119 (2015) 3268 – 3272.
[26] E. Hasselbrink, How non-adiabatic are surface dynamical processes?, Curr Opin Solid State Mater Sci 10 (2006) 192 – 204.
[27] Prevenslik TV. Quantum dots by QED, In: Proceedigs of the international conference on materials for advanced technologies (ICMAT), (July 2 – 6), Singapore, 2007.
[28] Prevenslik TV. Nanocatalysts by QED induced EM radiation, In: Proceedings of the 13th Nordic Symposium on Catalysis, Oct. 5-7, Goteborg, Sweden, 2008