Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[44544] Artykuł:

Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension

(Rozszerzenie koncepcji obciążeń granicznych na przypadki trójwymiarowe dla płyty z centralną szczeliną poddanej rozciąganiu)
Czasopismo: Journal of Theoretical and applied mechanics   Tom: 51, Zeszyt: 2, Strony: 349-362
ISSN:  1429-2955
Wydawca:  POLISH SOC THEORETICAL & APPLIED MECHANICS, FWARSAW UNIV TECHNOLOGY, FACULTY CIVIL ENGINEERING, AL ARMII LUDOWEJ 15, RM 650, WARSZAWA, 00-637, POLAND
Opublikowano: 2013
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Marcin Graba orcid logoWMiBMKatedra Technologii Mechanicznej i Metrologii*10015.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

fracture mechanics  cracks  FEM  limits loads  load-line displacement  CC(T) specimen 



Streszczenie:

W pracy przedstawiono numeryczną weryfikację wzorów pozwalających wyznaczyć obciążenie graniczne dla przypadku płyty z centralną szczeliną poddanej rozciąganiu (próbka CC(T)) dla przypadków płaskiego stanu naprężenia i płaskiego stanu odkształcenia. W kolejnym kroku dokonano rozszerzenia koncepcji wyznaczania obciążeń granicznych na przypadki trójwymiarowe, uwzględniając efekt grubości, wykorzystując szereg trójwymiarowych obliczeń numerycznych. Uzyskane wyniki aproksymowano wzorami analitycznymi. Efektem wymiernym pracy jest katalog rozwiązań numerycznych i ich aproksymacji, pozwalający oszacować obciążenie graniczne dla trójwymiarowego elementu konstrukcyjnego (z uwzględnieniem grubości), bez konieczności prowadzenia czasochłonnych obliczeń numerycznych. Zaprezentowane w pracy wyniki mogą znaleźć zastosowanie w analizie inżynierskiej (np. analiza FAD lub analiza CDF).




Abstract:

In the paper, the verification of the limit load solutions for a centrally cracked plate under
tension (CC(T)) is presented using FEM calculations. Numerical calculations and analysis
of the obtained FEM results were used to recalculation of the existing limit load formulas
proposed by EPRI procedures for plane strain and plane stress. After verification of the EPRI
solutions, three dimensional FEM calculation was done to determine the limit loads for 3D
cases of CC(T) specimens. The measurable effect of the paper is a catalogue of numerical
solutions and their approximations, which may be useful in the engineering analysis.



B   I   B   L   I   O   G   R   A   F   I   A
1. ADINA, 2008a, ADINA 8.7.3: ADINA: Theory and Modeling Guide - Volume I: ADINA, Report ARD 08-7, ADINA R&D, Inc., 2008
2. ADINA 2008b, ADINA 8.7.3: ADINA: User Interface Command Reference Manual - Volume I: ADINA Solids & Structures Model Definition, Report ARD 08-6, ADINA R&D, Inc., 2008
3. ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials, 2005
4. Begley J.A., Landes J.D., 1972, The J-integral as a fracture criterion in fracture toughness testing, Fracture Toughness, ASTM Special Technical Publication, 514, 1-23, 24-39
5. Brocks W., Cornec A., Scheider I., 2003, Computational aspects of nonlinear fracture mechanics, Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier, 127-209
6. Brocks W., Scheider I., 2003, Reliable J-values. Numerical aspects of the path-dependence of the J-integral in incremental plasticity, Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier, 127-209
7. Bucci R.J., Paris P.C., Landes J.D., Rice J.R., 1972, J-Integral estimation procedures, Fracture Toughness, ASTM Special Technical Publication, 514, 40-69
8. FITNET Report (European Fitness-for-service Network), Edited by M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers, Contract No. G1RT-CT-2001-05071, 2006
9. Gałkiewicz J., Graba M., 2006, Algorithm for determination of σij (nθ), εij(nθ), ui(nθ), dn(n) and In(n) functions in Hutchinson-Rice-Rosengren solution and its 3D generalization, Journal of Theoretical and Applied Mechanics, 44, 1, 19-30
10. Goldman N.L., Hutchinson J.W., 1975, Fully plastic crack problems: the center-cracked strip under plane strain, International Journal of Solids and Structures, 11, 575-591
11. Graba M., 2009, Numerical analysis of the mechanical fields near the crack tip in the elastic-plastic materials. 3D problems, PhD dissertation, Kielce University of Technology, Faculty of Mechatronics and Machine Building, p. 387, Kielce [in Polish]
12. Graba M., 2012, The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension, Journal of Theoretical and Applied Mechanics, 50, 1, 23-46
13. Graba M., 2013, Numerical verification of the limit load solutions for single edge notch specimen in tension, Archives of Civil and Mechanical Enginering, 13, 1, 45-56
14. Graba M., Gałkiewicz J., 2007, Influence of the crack tip model on results of the finite element method, Journal of Theoretical and Applied Mechanics, 45, 2, 225-237
15. Hutchinson J.W., 1968, Singular behavior at end of tensile crack in hardening material, Journal of the Mechanics and Physics of Solids, 16, 1, 13-31
16. Hutchinson J.W., Paris P.C., 1979, Stability analysis of J-controlled crack growth, ElasticPlastic Fracture, ASTM Special Technical Publication, 668, 37-64
17. Ilyushin A.A., 1946, The theory of small elastic-plastic deformations, Prikladnaia Matematika i Mekhanika, 10, p. 347
18. Kumar V., German M.D., Shih C.F., 1981 An engineering approach for elastic-plastic fracture analysis, Electric Power Research Institute, Inc. Palo Alto, CA (1981), EPRI Report NP-1931
19. Neimitz A., Dzioba I., Gałkiewicz J., Molasy R., 2004, A study of stable crack growth using experimental methods, finite elements and fractography, Engineering Fracture Mechanics, 71, 1325-1355
20. O'Dowd N.P., Shih C.F., 1991, Family of crack-tip fields characterized by a triaxiality parameter. I Structure of fields, Journal of the Mechanics and Physics of Solids, 39, 8, 989-1015
21. O'Dowd N.P., Shih C.F., 1992, Family of crack-tip fields characterized by a triaxiality parameter. II Fracture applications, Journal of the Mechanics and Physics of Solids, 40, 5, 939-963
22. Paris P.C., Tada H., Zahoor A., Ernst H., 1979, The theory of instability of the tearing mode of elastic-plastic crack growth, Elastic-Plastic Fracture. ASTM Special Technical Publication, 668, 5-36, 251-265
23. R5 - Issue 2, An Assessment Procedure for the High Temperature Response of Structures, British Energy Generation Ltd, 1998
24. R6. Assessment of the Integrity of Structures Containing Defects, Rev. 4. - Gloucester: British Energy Generation Ltd, UK, 2001
25. Rice J.R., 1973, Elastic-plastic models for stable crack growth, Mechanics and Mechanism of Crack Growth - Proc. at Cambridge, England, Ed. M.J. May, British Steel Corporation Physical Metallurgy Centre Publication, 1975, 14-39
26. Rice J.R., 1968a, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35, 379-386
27. Rice J.R., 1968b, Mathematical analysis in the mechanics of fracture, [In:] Fracture, edit. by H. Liebowitz, Vol. II, Academic Press, NY, 191-311
28. Rice J.R., Paris P.C., Merkle J.G., 1973, Some further results on J-integral analysis and estimates, Progress in Flaw Growth and Fracture Toughness Testing, ASTM Special Technical Publication, 536, 231-245
29. Rice J.R., Rosengren G.F., 1968, Plane strain deformation near crack tip in power-law hardening material, Journal of the Mechanics and Physics of Solids, 16, 1, 1-12
30. Rooke D.P., Cartwright J.C., 1976, Compendium of Stress Intensity Factors, Her Majesty's Stationary Office, London
31. Shih C.F., 1976, J-Integral estimates for strain hardening materials in antiplane shear using Fuldy plastic solutions, Mechanics of Crack Growth, ASTM Special Technical Publication, 590, 3-22
32. Shih C.F., 1981, Relationships between the J-integral and the crack opening displacement for stationary and extending cracks, Journal of the Mechanics and Physics of Solids, 29, 305-326
33. Shih C.F., de Lorenzi H.G., Andrews W.R., 1979, Studies on crack initiation and stable crack growth, Elastic-Plastic Fracture, ASTM Special Technical Publication, 668, 65-120
34. Shih C.F., Hutchinson J.W., 1976, Fully plastic solutions and large-scale yielding estimates for plane stress crack problems, Transactions of ASME. Journal of Engineering Materials and Technology. Series H, 98, 4, 289-295
35. SINTAP: Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No. BE95-1426 - Rotherham: British Steel, 1999
36. Sumpter J.D.G., Forbes A.T., 1992, Constraint based analysis of shallow cracks in mild steel, TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics Test and Application, M.G. Dawes (Ed.), Cambridge, UK, p. 7
37. Tada H., Paris P.C., Irwin G.R., 1973, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania
38. http://www.tu.kielce.pl/∼mgraba/Limits loads/index.php