Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[35660] Artykuł:

Effect of air entrainment on shrinkage of blended cements concretes

Czasopismo: Construction and Building Materials   Tom: 99, Strony: 298-307
ISSN:  0950-0618
Wydawca:  ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
Opublikowano: Wrzesień 2015
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Wojciech Piasta orcid logoWBiAKatedra Technologii i Organizacji Budownictwa *****5040.00  
Hubert Sikora50.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 40
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Concrete  Shrinkage  Air entrainment  Air content  Blast furnace slag  Limestone powder 



Abstract:

Shrinkage strains of air-entrained (AE) concretes were bigger than strains of non-air-entrained concretes made with the same cements. The results clearly showed an increase in strains with increasing content of air voids, regardless of cement type. Higher shrinkage strains of AE concretes may be most probably related to their microstructure of complex porosity and in particular, to porous cement paste adjacent to air void. Occurrence of air void–cement paste interfacial transition zones of higher porosity as well as their overlapping and interconnection may increase vapour diffusion accelerating moisture loss and drying shrinkage. Another likely reason for shrinkage increase may be increase in the volume of cement paste and decrease in the volume of aggregate in AE concrete.



B   I   B   L   I   O   G   R   A   F   I   A
[1] W. Kurdowski, The Chemistry of Cement and Concrete, Springer, Netherlands, 2014.
[2] B. Craeye, G. De Schutter, B. Desmet, J. Vantomme, G. Heirman, L. Vandewalle, Ö. Cizer, S. Aggoun, E.H. Kadri, Effect of mineral filler type on autogenous shrinkage of self-compacting concrete, Cem. Concr. Res. 40 (2010) 908–913.
[3] J.J. Thomas, H.M. Jennings, A colloidal interpretation of chemical aging of the CASAH gel and its effects on the properties of cement paste, Cem. Concr. Res. 36 (2006) 30–38.
[4] P.C. Aitcin, The durability characteristics of high performance concrete: a review, Cem. Concr. Compos. 25 (2003) 409–420.
[5] S. Tongaroonsri, S. Tangtermsirikul, Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition, Constr. Build. Mater. 23 (2009) 1050–1056.
[6] E. Güneyisi, M. Gesog˘lu, E. Özbay, Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures, Constr. Build. Mater. 24 (2010) 1878–1887.
[7] L.M. Dellinghausen, A.L.G. Gastaldini, F.J. Vanzin, K.K. Veiga, Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag, Constr. Build. Mater. 37 (2012) 652–659.
[8] A. Itim, K. Ezziane, El-Hadj Kadri, Compressive strength and shrinkage of mortar containing various amounts of mineral additions, Constr. Build. Mater. 25 (2011) 3603–3609.
[9] K.M. Lee, H.K. Lee, S.H. Lee, G.Y. Kim, Autogenous shrinkage of concrete containing granulated blast-furnace slag, Cem. Concr. Res. 36 (2006) 1279–1285.
[10] Y. Li, J. Bao, Y. Guo, The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures, Constr. Build. Mater. 24 (2010) 1855–1860.
[11] Z. Giergiczny, M.A. Glinicki, M. Sokołowski, M. Zielinski, Air void system and frost-salt scaling of concrete containing slag-blended cement, Constr. Build. Mater. 23 (2009) 2451–2456.
[12] H.S. Wong, A.M. Pappas, R.W. Zimmerman, N.R. Buenfeld, Effect of entrained air voids on the microstructure and mass transport properties of concrete, Cem. Concr. Res. 41 (2011) 1067–1077.
[13] D. Penev, M. Kawamura, Moisture diffusion in soil–cement mixtures and compacted lean concrete, Cem. Concr. Res. 21 (1991) 137–146.
[14] S.F. Wong, T.H. Wee, S. Swaddiwudhipong, S.L. Lee, Study of water movement in concrete, Mag. Concr. Res. 53 (3) (2001) 205–220.
[15] N. Jafarifar, K. Pilakoutas, T. Bennett, Moisture transport and drying shrinkage properties of steel–fibre-reinforced-concrete, Constr. Build. Mater. 73 (2014) 41–50.
[16] A.M. Neville, The Properties of Concrete, fifth ed., Polski Cement, Cracow, 2012.
[17] A.I. Rashed, R.B. Williamson, Microstructure of entrained air voids in concrete, Part I, J. Mater. Res. 6 (9) (1991) 2004–2012.
[18] D.J. Corr, J. Lebourgeois, P.J.M. Monteiro, S.J. Bastacky, E.M. Gartner, Air void morphology in fresh cement pastes, Cem. Concr. Res. 32 (2002) 1025–1031.
[19] M.T. Ley, R. Chancey, M.C.G. Juenger, K.J. Folliard, The physical and chemical characteristics of the shell of air-entrained bubbles in cement paste, Cem. Concr. Res. 39 (2009) 417–425.
[20] G. Fagerlund, Influence of Pore Structure on Shrinkage, Strength and Elastic Moduli of Concrete. 44th Rep, Lund University of Technology, Lund, 1973.
[21] P.W. Keene, The Effect of Air-Entrainment on the Shrinkage of Concrete Stored in Laboratory Air. TRA/331 Tech. Rep., Cem Concr Assoc, London, 1960.