Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[30173] Artykuł:

Instantaneous heat transfer for large drops levitating over a hot surface

Czasopismo: International Journal of Heat and Mass Transfer   Tom: 73, Zeszyt: Complete, Strony: 110-117
ISSN:  0017-9310
Wydawca:  PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Opublikowano: Czerwiec 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Tadeusz Orzechowski orcid logoWiŚGiEKatedra Sieci i Instalacji Sanitarnych5020.00  
Sylwia Wciślik orcid logoWiŚGiEKatedra Sieci i Instalacji Sanitarnych5020.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 40
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Water drop  Leidenfrost regime  Mass flux  Heat transfer  Infrared mapping 



Abstract:

The paper deals with the process of evaporation of large water drops with the initial mass of 1g deposited on a hot surface, the temperature of which is higher than Leidenfrost point. The behavior of water drops was examined at the test stand, at which three independent measurement paths were available, namely those of instantaneous mass measurements, temperature recording and sequential recording of the thermal field of the drop upper surface. Thus obtained sets of drop mass, drop temperature, and its area size, for pre-defined temperature of the heating cylinder having a great thermal capacity, were used to compute instantaneous values of the heat transfer coefficient. The methodology of investigations was discussed in detail. Measurement uncertainties were analysed using the total differential method. On the basis of thermographic images, recorded with a thermovision camera, of the drop upper surfaces, substantial thermal diversity of drops was found. The difference between the maximum and minimum temperatures periodically amounts to above 9°C, and standard deviation from the area of their upper surfaces amounts even to 2°C. Measured instantaneous values of the heat transfer coefficient were approximated with a power function, dependent on the heating surface temperature and a momentary drop size. This relation was selected in accordance with the developed approximation procedure, at the imposed condition of the minimum of the mean square error. Consequently, a constant value of exponent and a dependence on the heating wall temperature were obtained. It was shown that values of measured and approximated heat transfer coefficients are contained in the interval defined by the value of the relative error ranging from -13% to +9%. An approximation of the perpendicular projection of the drop area in the form of polynomial is proposed. Under these assumptions, an analytical solution to the energy balance equation is given. Exemplary computations provided in the study



B   I   B   L   I   O   G   R   A   F   I   A
1. Chan, M.A.& Yap, Ch.R.& Ng, K.Ch., "Modeling and testing of an advanced compact two-phase cooler for electronics cooling", Int. J. Heat Mass Transfer, vol. 52, 2009, p.3456-3463
2. Choi, J.& Jeong, M.& Yoo, J.& Seo, M., "A new CPU cooler design based on an active cooling heat sink combined with heat pipes", Appl. Therm. Eng., vol. 44, 2012, p.50-56
3. Khamis, I.& Kavvadias, K.C., "Trends and challenges toward efficient water management in nuclear power plants", Nucl. Eng. Des., vol. 248, 2012, p.48-54
4. Cheung, F.B.& Bajorek, S.M., "Dynamics of droplet breakup through a grid spacer in a rod bundle", Nucl. Eng. Des., vol. 241, 2011, p.236-244
5. Cho, H.K.& Choi, K.Y.& Cho, S.& Song, C.-H., "Experimental observation of the droplet size change across a wet grid spacer in a 6×6 rod bundle", Nucl. Eng. Des., vol. 241, 2011, p.4649-4656
6. Chen, R.-H.& Chiu, S.-L.& Lin, T.-H., "On the collision behaviors of a diesel drop impinging on a hot surface", Exp. Therm. Fluid Sci., vol. 32, 2007, p.587-595
7. Arifin, Y.M.& Furuhata, T.& Saito, M.& Arai, M., "Diesel and bio-diesel fuel deposits on a hot surface", Fuel, vol. 87, 2008, p.1601-1609
8. Wang, Y.& Li, Y.& Weng, S.& Su, M., "Experimental investigation on humidifying performance of counter flow spray saturator for humid air turbine cycle", Energy Convers. Manage., vol. 48, 2007, p.756-763
9. Al-Ibrahim, A.M.& Varnham, A., "A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia", Appl. Therm. Eng., vol. 30, 2010, p.1879-1888
10. Kouhikamali, R.& Hesami, H.& Ghavamian, A., "Convective heat transfer in a mixture of cooling water and superheated steam", Int. J. Therm. Sci., vol. 60, 2012, p.205-211
11. Nomuraa, H.& Takahashi, M.& Ujiie, Y.& Hara, H., "Observation of droplet motion during flame spread on three-fuel-droplet array with a pendulum suspender", Proc. Combust. Inst., vol. 30, 2005, p.1991-1999
12. Balocco, C.& Lio, P., "Assessing ventilation system performance in isolation rooms", Energy Build., vol. 43, 2011, p.246-252
13. Maqua, C.& Castanet, G.& Grisch, F.& Lemoine, F.& Kristyadi, T.& Sazhin, S.S., "Monodisperse droplet heating and evaporation: experimental study and modeling", Int. J. Heat Mass Transfer, vol. 51, 2008, p.3932-3945
14. Lemouari, M.& Boumaza, M.& Kaabi, A., "Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower", Energy Convers. Manage., vol. 50, 2009, p.1610-1617
15. Fisenko, S.P.& Brin, A.A.& Petruchik, A.I., "Evaporative cooling of water in a mechanical draft cooling tower", Int. J. Heat Mass Transfer, vol. 47, 2004, p.165-177 16. Yu, H.-Z., "Froude-modeling-based general scaling relationships for fire suppression by water sprays", Fire Saf. J., vol. 47, 2012, p.1-7
17. Cioulachtjian, S.& Launay, S.& Boddaert, S.& Lallemand, M., "Experimental investigation of water drop evaporation under moist air or saturated vapour conditions", Int. J. Therm. Sci., vol. 49, 2010, p.859-866
18. Nemec, P.& Čaja, A.& Malcho, M., "Mathematical model for heat transfer limitations of heat pipe", Math. Comput. Modell., vol. 57, 2013, p.126-136
19. Canti, G.& Celata, G.P.& Cumo, M.& Furrer, M.& Saraceno, L., "Effect of droplets generation in the boiling limit conditions: heat pipe visualization", Int. J. Therm. Sci., vol. 52, 2012, p.1-7
20. Nagai, N.& Nishio, S., "Leidenfrost temperature on an extremely smooth surface", Exp. Therm. Fluid Sci., vol. 12, 1996, p.373-379
21. Bernardyn, J.D.& Mudawar, I., "The Leidenfrost point: experimental study and assessment of existing models", J. Heat Transfer Trans. ASME, vol. 121, 1999, p.894-903
22. Shin, D.H.& Lee, S.H.& Jung, J.-Y.& Yoo, J.Y., "Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces", Microelectron. Eng., vol. 86, 2009, p.1350-1353
23. Lee, C.Y.& Zhang, B.J.& Park, J.& Kim, K.J., "Water droplet evaporation on Cu-based hydrophobic surfaces with nano and micro-structures", Int. J. Heat Mass Transfer, vol. 55, 2012, p.2151-2159
24. Bin, L.& Bennacer, R.& Bouvet, A., "Evaporation of methanol droplet on the Teflon surface under different air velocities", Appl. Therm. Eng., vol. 31, 2011, p.3792-3798
25. Oprins, H.& Danneels, J.& Van Ham, B.& Vandevelde, B.& Baelmans, M., "Convection heat transfer in electrostatic actuated liquid droplets for electronics cooling", Microelectron. J., vol. 39, 2008, p.966-974
26. Lu, G.& Duan, Y.-Y.& Wang, X.-D.& Lee, D.-J., "Internal flow in evaporating droplet on heated solid surface", Int. J. Heat Mass Transfer, vol. 54, 2011, p.4437-4447
27. Birouk, M.& Abou Al-Sood, M.M., "Droplet evaporation in a turbulent high-pressure freestream - a numerical study", Int. J. Therm. Sci., vol. 49, 2010, p.264-271
28. Chatzikyriakou, D.& Walker, S.P.& Hewitt, G.F.& Narayanan, C.& Lakehal, D., "Comparison of measured and modelled droplet-hot wall interactions", Appl. Therm. Eng., vol. 29, 2009, p.1398-1405
29. Crafton, E.F.& Black, W.Z., "Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces", Int. J. Heat Mass Transfer, vol. 47, 2004, p.1187-1200
30. Pathak, B.& Basu, S.& Kumar, R., Heat and mass transfer and chemical transformation in a cerium nitrate droplet", Int. J. Heat Mass Transfer, vol. 63, 2013, p.301-312
31. Bodzenta, J.& Kaźmierczak, A.& Kruczek, T., "Analysis of thermograms based on FFT algorithm", J. Phys. (IV), vol. 129, 2005, p.201-206
32. Orzechowski, T.& Wciślik, S., "Analysis of the droplet film boiling heat transfer under ambient pressure", Energy Convers. Manage., vol. 76, 2013, p.918-924