Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[129200] Artykuł:

The Efficiency of a Biological Reactor in a DomesticWastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam

Czasopismo: Sustainability   Tom: 16, Zeszyt: 1149, Strony: 1-14
ISSN:  2071-1050
Opublikowano: Styczeń 2024
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka9100.00100.00  
Krzysztof Chmielowski Niespoza "N" jednostki09.00.00  
Wiktor Halecki Niespoza "N" jednostki09.00.00  
Adam Masłon Niespoza "N" jednostki09.00.00  
Marek Kalenik Niespoza "N" jednostki09.00.00  
Marcin Spychała Niespoza "N" jednostki09.00.00  
Dawid Bedla Niespoza "N" jednostki09.00.00  
Tomasz Pytlowany Niespoza "N" jednostki09.00.00  
Iwona Paśmionka Niespoza "N" jednostki09.00.00  
Jakub Sikora Niespoza "N" jednostki09.00.00  
Tomasz Sionkowski Niespoza "N" jednostki09.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


DOI LogoDOI    
Keywords:

prototype filter  wastewater treatment efficiency  on-site domestic treatment  reusee-waste Sustainability 



Abstract:

The primary objective of this research was to assess the efficacy of a novel solution under conditions closely resembling those of real-world scenarios. Biological beds, or filters, hold significant potential for widespread implementation in individual households, particularly in areas with dispersed housing. The system’s aim was to improve the quality of wastewater treated in on-site domestic biological treatment plants. A pivotal aspect of the project involved developing a prototype research installation for conducting comprehensive testing. Our installation system consisted of several components designed to create a laboratory-scale model for domestic wastewater treatment. The model comprised four biological reactors filled with ABS material and secured by a PUR frame. Additionally, the tested model included a controller for wastewater dosing control, a septic tank as a reservoir, and four tanks for collecting purified wastewater. Through regression analysis using the Generalized Linear Model (GLM), a correlation between CODCr and TSS was revealed. This study presents the research findings concerning the development of a prototype installation that incorporates an advanced reactor or filter. The data derived from this research have the potential to contribute to the creation of products that enhance the performance and efficiency of household wastewater treatment systems.



B   I   B   L   I   O   G   R   A   F   I   A
1. Qadir, M. Drechsel, P. Jiménez Cisneros, B. Kim, Y. Pramanik, A. Mehta, P. Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source. In Natural Resources Forum Blackwell Publishing Ltd.: Oxford, UK, 2010 Volume 1, pp. 40–51.
2. Mateo-Sagasta, J. Raschid-Sally, L. Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater Drechsel, P., Qadir, M.,Wichelns, D., Eds. Springer: Dordrecht, The Netherlands, 2015 pp. 15–38. [CrossRef]
3. Adhikari, S.Halden, R.U. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environ. Int. 2022, 163, 107217. [CrossRef] [PubMed]
4. Ighalo, J.O. Omoarukhe, F.O. Ojukwu, V.E. Iwuozor, K.O. Igwegbe, C.A. Cost of adsorbent preparation and usage in wastewater treatment: A review. Clean. Chem. Eng. 2022, 3, 100042. [CrossRef]
5. Ghosh, S. Malloum, A. Igwegbe, C.A. Ighalo, J.O. Ahmadi, S. Dehghani, M.H. Othmani, A. Gökkus, Ö. Mubarak, N.M. New generation adsorbents for the removal of fluoride from water and wastewater: A review. J. Mol. Liq. 2022, 46, 118257. [CrossRef]
6. Guven, H. Ersahin, M.E. Ozgun, H. Ozturk, I. Koyuncu, I. Energy and material refineries of future: Wastewater treatment plants. J. Environ. Manag. 2023, 329, 117130. [CrossRef] [PubMed]
7. Li, D. Sun, Y. Shi, Y. Wang, Z. Okeke, S. Yang, L. Zhang, W. Xiao, L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. Sci. Total Environ. 2023, 869, 161689. [CrossRef] [PubMed]
8. Rosemarin, A.S. Macura, B. Carolus, J.F. Barquet, K. Ek, F. Järnberg, L. Lorick, D. Johannesdottir, S. Pedersen, S.M. Koskiaho, J. et al. Circular nutrient solutions for agriculture and wastewater–a review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [CrossRef]
9. Kari´c, N. Maia, A.S. Teodorovi´c, A. Atanasova, N. Langergraber, G. Crini, G. Ribeiro, A.R.L. Ðoli´c, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [CrossRef]
10. Molinos-Senante, M. Hernández-Sancho, F. Sala-Garrido, R. Economic feasibility study for wastewater treatment: A cost–benefit analysis. Sci. Total Environ. 2010, 408, 4396–4402. [CrossRef]
11. Soffian, M.S. Halim, F.Z.A. Aziz, F. Rahman, M.A. Amin, M.A.M. Chee, D.N.A. Carbon-based material derived from biomass waste for wastewater treatment. Environ. Adv. 2022, 9, 100259. [CrossRef]
12. García-Pérez, A. Harrison, M. Chivers, C. Grant, B. Recycled shredded-tire chips used as support material in a constructed wetland treating high strength wastewater from a bakery: Case study. Recycling 2015, 1, 3–13. [CrossRef]
13. Santucci, V. Fiore, S. Recovery of waste polyurethane from E-waste. Part II. Investigation of the adsorption potential for wastewater treatment. Materials 2021, 14, 7587. [CrossRef] [PubMed]
14. Dorji, U. Dorji, P. Shon, H. Badeti, U. Dorji, C. Wangmo, C. Tijing, L. Kandasamy, J. Vigneswaran, S. Chanan, A.et al. On-site domestic wastewater treatment system using shredded waste plastic bottles as biofilter media: Pilot-scale study on effluent standards in Bhutan. Chemosphere 2022, 286, 131729. [CrossRef]
15. Weltens, R. Vanermen, G. Tirez, K. Robbens, J. Deprez, K. Michiels, L. Screening tests for hazard classification of complex waste materials–Selection of methods. Waste Manag. 2012, 32, 2208–2217. [CrossRef] [PubMed]
16. O’Brien, J.W. Grant, S. Banks, A.P. Bruno, R. Carter, S. Choi, P.M. Covaci, A. Crosbie, N.D. Gartner, C. Hall, W. et al. A National Wastewater Monitoring Program for a better understanding of public health: A case study using the Australian Census. Environ. Int. 2019, 122, 400–411.[CrossRef]
17. Dvorˇák, L. Gómez, M. Dolina, J.Cˇ ernín, A. Anaerobic membrane bioreactors—A mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination Water Treat. 2016, 57, 19062–19076. [CrossRef]
18. Gedda, G. Balakrishnan, K. Devi, R.U. Shah, K.J. Introduction to conventional wastewater treatment technologies: Limitations and recent advances. Mater. Res. Found 2021, 91, 1–36.
19. Nasr, F.A. Doma, H.S. Abdel-Halim, H.S. El-Shafai, S.A. Chemical industry wastewater treatment. Environmentalist 2007, 27, 275–286. [CrossRef]
20. Oladipo, A.A. Adeleye, O.J. Oladipo, A.S. Aleshinloye, A.O. Bio-derived MgO nanopowders for BOD and COD reduction from tannery wastewater. J. Water Process Eng. 2017, 16, 142–148. [CrossRef]
21. Shao, Q. Lu, M. Zhou, J. Zhu, Z. Song, Y. Preparation of non-sintered fly ash filter (NSFF) for ammonia nitrogen adsorption. Environ. Technol. 2019, 40, 1988–1999. [CrossRef]
22. Lu, N. Chen, H. Chen, J. Cao, Y.-F. Ceramic Aggregate Material Formulated with MSWI Fly Ash and Fuel Ash for Use as Filter Media. Minerals 2023, 13, 845. [CrossRef]
23. Lai, B. Zhou, Y.Yang, P. Treatment of wastewater from acrylonitrile–butadiene–styrene (ABS) resin manufacturing by Fe0/GAC– ABFB. Chem. Eng. J. 2012, 200, 10–17. [CrossRef]
24. Kumar, A. Prasad, B. Sandhwar, V.K. Garg, K.K. Mechanistic insight into heterogeneous Fenton-like catalysis with MAl2O3/ SiO2 (M = Fe, Co and Ni) for acrylonitrile mineralization from real ABS resin wastewater: Optimization and toxicity assessment. J. Environ. Chem. Eng. 2021, 9, 105177. [CrossRef]
25. Chmielowski, K. Halecki,W. Bedla, D. Dacewicz, E. Use of waste poly(acrylonitrile-co-butadiene-co-styrene) for wastewater treatment in a biological filter reactor. Przemysł Chem. 2022, 101, 109–111. (In Polish)
26. Benhadji, A. Ahmed, M.T. Maachi, R. Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination 2011, 277, 128–134. [CrossRef]
27. Mły´ nski, D. Mły´ nska, A. Chmielowski, K. Pawełek, J. Investigation of theWastewater Treatment, Plant Processes Efficiency Using Statistical Tools. Sustainability 2020, 12, 10522. [CrossRef]
28. Wei, G. Wei, T. Li, Z. Wei, C. Kong, Q. Guan, X. Qiu, G. Hu, Y. Wei, C. Zhu, S. et al. BOD/COD ratio as a probing index in the O/H/O process for coking wastewater treatment. Chem. Eng. J. 2023, 466, 143257. [CrossRef]
29. Dacewicz, E. Chmielowski, K. Application of multidimensional clustering for an assessment of pollutants removal from domestic wastewater using a filter with a plastic waste filling. J. Water Process Eng. 2019, 29, 100794. [CrossRef]
30. Khelifi, E. Gannoun, H. Touhami, Y. Bouallagui, H. Hamdi, M. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. J. Hazard. Mater. 2008, 152, 683–689. [CrossRef]
31. Li, X. Huang, Y. Guo, Y. Li,W. Li, Y. Full-scale application and performance of a new multi-self-reflow decentralizedWastewater treatment device: Impact of hydraulic and pollutant loads. J. Environ. Sci. 2023, 131, 37–47. [CrossRef]
32. Yu, W.-J. Sun, J. Zhang, W.-J. Chen, Y. Yang, J.-L. Li, S.-P. Zhu, G.-C. Lu, Y.-Z. The Influence of Atmospheric Pressure and Organic Loading on the Sustainability of Simultaneous Nitrification and Denitrification. Sustainability 2023, 15, 15689. [CrossRef]
33. Dereszewska, A. Cytawa, S. Circular Economy in Wastewater Treatment Plants—Potential Opportunities for Biogenic Elements Recovery. Water 2023, 15, 3857. [CrossRef]
34. Vilela, P. Nam, K. Yoo, C.Wastewater Treatment System Optimization for Sustainable Operation of the SHARON–Anammox Process under Varying Carbon/Nitrogen Loadings. Water 2023, 15, 4015. [CrossRef]
35. Guerra-Rodríguez, S. Oulego, P. Rodríguez, E. Singh, D.N. Rodríguez-Chueca, J. Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. Water 2020, 12, 1431. [CrossRef]
36. Ahmed, S.F. Islam, N. Tasannum, N. Mehjabin, A. Momtahin, A. Chowdhury, A.A. Almomani, F. Mofijur, M. Microplastic removal and management strategies for wastewater treatment plants. Chemosphere 2024, 347, 140648. [CrossRef] [PubMed]
37. Hirbod, F. Karimi, T. Mohammadnazari, Z. Rabbani, M. Aghsami, A. Municipal solid waste management using multiple disposal location-arc routing and waste segregation approach: A real-life case study in England. J. Ind. Prod. Eng. 2024, 41, 81–100. [CrossRef]
38. Liu, Z. Nowack, B. Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA, PC, and PMMA) as macroplastics and microplastics. Resour. Conserv. Recycl. 2022, 179, 106071. [CrossRef]