Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
Nie podano kosztów publikacji ! (W celu uzupełnienia skontaktuj się z Dyrektorem Dyscypliny)

[128500] Artykuł:

Robust Optimization of the Steel Single Story Frame

(Optymalizacja odpornościowa stalowej ramy jednokondygnacyjnej)
Czasopismo: Acta Polytechnica Hungarica   Tom: 21, Zeszyt: 1, Strony: 9-29
ISSN:  1785-8860
Opublikowano: Styczeń 2024
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport33.00.00  
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport33.00.00  
Piotr Tauzowski Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 0


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

niezawodność  solidna optymalizacja  teoria drugiego rzędu  metoda przemieszczenia 


Keywords:

reliability  robust optimization  second order theory  displacement method 



Streszczenie:

We współczesnych praktykach projektowych oczekuje się, że konstrukcje budowlane nie tylko będą spełniać wymogi bezpieczeństwa, ale także będą zoptymalizowane. Jednak optymalne projekty mogą być bardzo wrażliwe na przypadkowe zmiany parametrów modelu i działania zewnętrzne. Rozwiązania, które w warunkach nominalnych wydają się skuteczne, mogą okazać się niewystarczające, jeśli weźmiemy pod uwagę losowość parametrów. Aby sprostać temu wyzwaniu, wprowadzono koncepcję solidnej optymalizacji, która rozszerza deterministyczne sformułowania optymalizacyjne o uwzględnienie losowej zmienności wartości parametrów. W tym badaniu wykazaliśmy możliwość zastosowania
solidna optymalizacja w projektowaniu konstrukcji budowlanych na przykładzie prostej ramy ortogonalnej. Analizę statyczno-wytrzymałościową przeprowadza się w oparciu o metodę przemieszczeń, wykorzystując teorię drugiego rzędu. Aby ocenić poziom bezpieczeństwa ramy stalowej, dokonuje się oceny wstępnej poprzez określenie wskaźnika niezawodności i prawdopodobieństwa awarii metodą Monte Carlo. Następnie stosuje się solidną optymalizację, wykorzystując powierzchnię odpowiedzi drugiego rzędu. Projekty eksperymentalne są generowane zgodnie z optymalnym planem łacińskiej hipersześcianu. Innowacyjnym aspektem tych badań jest propozycja matematyczno-numerycznego algorytmu rozwiązywania problemu optymalizacji z uwzględnieniem losowego charakteru parametrów projektowych.




Abstract:

In contemporary design practices, building structures are expected to not only meet safety requirements but also be optimized. However, optimal designs can be highly sensitive to random variations in model parameters and external actions. Solutions that appear effective under nominal conditions may prove inadequate when parameter randomness is considered. To address this challenge, the concept of robust optimization has been introduced, which extends deterministic optimization formulations to incorporate the random variability of parameter values. In this study, we demonstrate the applicability of
robust optimization in the design of building structures using a simple orthogonal frame as an example. The static-strength analysis is conducted based on the displacement method, utilizing second-order theory. To assess the safety level of the steel frame, a preliminary evaluation is performed by determining the reliability index and failure probability using the Monte Carlo Method. Robust optimization is then employed, leveraging the second-order response surface. Experimental designs are generated following an optimal Latin hypercube plan. The proposal of a mathematical-numerical algorithm for solving the optimization problem while considering the random nature of design parameters constitutes the innovative aspect of this research.



B   I   B   L   I   O   G   R   A   F   I   A
[1] N. Kuschel, R. Rackwitz: Optimal design under time-variant reliability constraints, Struct. Saf., Vol. 22, No. 2, 2000, pp. 113-128, DOI: 10.1016/S0167-4730(99)00043-0
[2] H. Streicher, R. Rackwitz: Reliability-oriented optimization for timeinvariant problems with optimization algorithm JOINT 5, research report, Technical Report Project 28159, 2001
[3] H. Streicher, R. Rackwitz: Structural optimization - a one level approach, S. Jendo, K. Doliński, M. Kleiber (eds.), AMAS Workshop on ReliabilityBased Design and Optimization - RBO’02, 2002
[4] N. Kuschel, R. Rackwitz: Two basic problems in reliability-based structural optimization, Math. Methods Oper. Res. , Vol. 46, No. 3, 1997, pp. 309–333, DOI: 10.1007/BF01194859
[5] B. D. Youn, K. K. Choi: A new response surface methodology for reliabilitybased design optimization, Comput. Struct. , Vol. 82, No. 2–3, 2004, pp. 241–256, DOI:10.1016/j.compstruc.2003.09.002.
[6] M. Habashneh, M. Movahedi Rad, Reliability based geometrically nonlinear bi-directional evolutionary structural optimization of elasto-plastic material. Sci Rep 12, Vol. 5989, 2022, DOI: 10.1038/s41598-022-09612-z
[7] M. Movahedi Rad, M. Habashneh, J. Lógó, Elasto-Plastic limit analysis of reliability based geometrically nonlinear bi-directional evolutionary topology optimization, Structures, Vol. 34, 2021, pp. 1720-1733, DOI:10.1016/j.istruc.2021.08.105.z
[8] I. Doltsinis, Z. Kang: Robust design of non-linear structures using optimization methods, Comput. Methods Appl. Mech. Eng. , Vol. 194, No. 12–16, 2005, pp. 1179–1795, DOI: 10.1016/j.cma.2004.02.027
[9] W. Chen, W. Fu, S. B. Biggers and R. A. Latour: An affordable approach for robust design of thick laminated composite structure, Optim. Eng. , Vol. 1, No. 3, 2000, pp. 305–322, DOI: 10.1023/A:1010078107194
[10] P. Zabojszcza, U. Radoń and P. Tauzowski: Robust optimization of a singlelayer lattice dome, Modern Trends in Research on Steel, Aluminium and Composite Structures, 2021, DOI: 10.1201/9781003132134
[11] R. Rackwitz, B. Fiessler: Structural reliability under combined random load sequences, Comput. Struct., Vol. 9, No. 5, 1978, pp. 489–494
[12] A. M. Hasofer, N. Lind: Exact and Invariant Second-Moment Code Format, J Eng Mech Div-ASCE, Vol. 100, No. 1, 1974, pp. 111–121
[13] W. Mochocki, U. Radoń: Analysis of Basic Failure Scenarios of a Truss Tower in a Probabilistic Approach, Appl. Sci., Vol. 9, 2662, 2019, DOI: 10.3390/app9132662
[14] K. Kubicka, P. Obara, U. Radoń and W. Szaniec: Assessment of steel truss
fire safety in terms of the system reliability analysis, Vol. 19, No 2, 2019, pp. 417 – 427, DOI: 10.1016/j.acme.2018.12.002
[15] A. Dudzik: Reliability Assessment of Steel-Aluminium Lattice Tower, IOP Conf. Ser. Mater. Sci. Eng., Vol. 245, pp. 1–9, 2017, DOI: 10.1088/1757-
899X/245/3/032072
[16] M. Hohenbichler, S. Gollwitzer, W. Kruse and R. Rackwitz: New light on first and second order reliability methods, Struct. Saf., No. 4, 1987, pp. 267- 284
[17] A. Der Kiureghian, M. De Stefano: Efficient algorithm for second-order reliability analysis, J. Eng. Mech., Vol. 117, No. 12, 1991, pp. 2904–2923
[18] A. Dudzik and U. Radoń: The evaluation of algorithms for determination of the reliability index, Arch. Civ. Eng., Vol. LXI, No. 3, 2015, pp. 133–147, DOI: 10.1515/ace-2015-0030
[19] L. Rossi, M. H. M. Winands and C. Butenweg: Monte Carlo Tree Search as an intelligent search tool in structural design problems, Eng. Comput., 2021,
DOI: 10.1007/s00366-021-01338-2
[20] B. Potrzeszcz-Sut: Reliability analysis of shell truss structure by hybrid Monte Carlo method, Journal of Theoretical and Applied Mechacnics, No.
58, 2020, pp. 469–482, DOI: 10.15632/jtam-pl/118886
[21] A. Dudzik and B. Potrzeszcz-Sut: Hybrid Approach to the First Order Reliability Method in the Reliability Analysis of a Spatial Structure, Appl.
Sci.-BASEL, Vol. 11, No. 2:648, 2021, DOI: 10.3390/app11020648
[22] U. Radoń, P. Zabojszcza: The impact of node location imperfections on the reliability of single-layer steel domes, Appl. Sci. 2019, 9(13), 2742

https://doi.org/10.3390/app9132742
[23] U. Radoń, P. Zabojszcza: Stability analysis of the single-layer dome in probabilistic description by the Monte Carlo method, J. Theor. Appl. Mech., Vol. 58, No. 2, 2020, pp. 425–436, DOI: 10.15632/jtam-pl/118950
[24] K. Doliński: Importance Sampling Techniques in Reliability Calculation, Vol. 37, IPPT PAN, Warszawa, 1988
[25] M. Fujita, R. Rackwitz: Updating first and second order reliability estimates by importance sampling, Jpn. Soc. Civ. Eng.,Vol. 392, No.I–9,1988, pp. 53– 59
[26] Y. Q. Li, Z. S. Cui, X. Y. Ruan, D. J. Zhang: CAE-based six sigma robust optimization for deep-drawing sheet metal process, The International Journal of Advanced Manufacturing Technology, Vol. 30, 2006, pp. 631 – 637
[27] L. C. Tang, K. Xu, A unified approach for dual response surface optimization, Journal of Quality Technology, Vol. 34, 2002, pp. 437 – 447
[28] G. G. Vining, R. H. Myers: Combining Taguchi and response surface philosophies: a dual response approach, Journal of Quality Technology, Vol. 22, 1990, pp. 38–45
[29] O. Yeniay, R. Unal, A. R. Lepsch: Using dual response surfaces to reduce variability in launch vehicle design: A case study, Reliability Engineering and System Safety, Vol. 91, 2006, pp. 407– 412
[30] G.E.P. Box, K.B. Wilson: On the Experimental Attainment of Optimum Conditions (with discussion), Journal of the Royal Statistical Society Series B 13, 1951, pp. 1–45
[31] E. Urbańska-Galewska: Tolerances in steel structures connected to screws, Monograph, Vol. 59, Gdańsk University of Technology Publishing House, Gdańsk, 2005
[32] E. Urbańska-Galewska: Tolerances in the construction of steel bar structures, Monograph, Vol. 52, Gdańsk University of Technology Publishing House, Gdańsk, 2004
List of standards
N 1. EN 1993-1-1. Eurocode 3: Design of steel structures – Part 1–1: General rules and rules for buildings.
N 2. EN 1991-1-3. Eurocode 1: Actions on structures – Part 1–3: General actions – Snow loads.
N 3. IN 1991-1-4. Eurocode 1: Actions on structures – Part 1–4: General actions – Wind actions.
N 4. EN 1990: 2002. Eurocode – Basis for structural design.
N 5. PN-EN 10210-2. Hot finished steel structural hollow sections – Part 2: Tolerances, dimensions and sectional properties.
N 6. PN-EN 1090-2. Execution of steel structures and aluminium structures. Part 2: Technical requirements for steel structures.