Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[127700] Artykuł:

Load and Deformation Analysis in Experimental and Numerical Studies of Full-Size Wooden Beams Reinforced with Prestressed FRP and Steel Bars

Czasopismo: Applied Sciences   Tom: 13, Zeszyt: 24, Strony: 1-20
ISSN:  2076-3417
Opublikowano: Grudzień 2023
Liczba arkuszy wydawniczych:  1.65
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Wdowiak-Postulak orcid logo WBiAKatedra Wytrzymałości Materiałów i Analiz Konstrukcji Budowlanych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport25100.00100.00  
Jozef Gocál Niespoza "N" jednostki25.00.00  
František Bahleda Niespoza "N" jednostki25.00.00  
Jozef Prokop Niespoza "N" jednostki25.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

wooden beams  bending  strength  load-bearing capacity  deformability  bars  FRP  steel  FEM 



Abstract:

The use of composite precast or steel bars as reinforcements for timber beams is an important technique that can improve effectiveness or allow cross sections to be reduced. This paper presents experimental, theoretical, and numerical studies of full-size timber beams measuring 82 × 162 × 3650 mm3 using prestressed steel bars and 10 mm diameter basalt and glass bars with a prestress of 10 MPa. In addition, parametric studies were carried out using FEM numerical simulations. In the experimental tests, an increase in load-bearing capacity and stiffness of up to 58% and 10.7% for steel bars, 32% and 10.1% for basalt bars, and 27% and 7.8% for glass bars, respectively, was obtained compared to unreinforced beams. The different levels of improvement in reinforcement efficiency was also related to the different elastic modulus of the reinforcement itself. Unreinforced beams showed a linear elastic range. In contrast, on beams reinforced with steel bars, the curve had a slightly steeper line than the control beam, and the slope of the curve then decreased when a certain load was reached. All beams failed when the lower wood fibers reached maximum tensile strain. The allowable compressive strain then decreased by 36.6% for basalt bars, 32.9% for glass bars, and 30.4% for steel bars. The use of prestressing further exploited the strength of the reinforcement beyond the yield point. All unreinforced beams primarily failed in the tension zone due to fracture of the timber fibers. Prestressed and reinforced beams were already failing due to bending and shear. The experimental and numerical analysis was also compared, and the results showed a good agreement and a maximum difference of approximately 5.7%.



B   I   B   L   I   O   G   R   A   F   I   A
1. Alkhudery, H.H.
Al-Tameemi, H.A.
Al-Katib, H.A.A. Experimental and theoretical investigation of the structural behavior of reinforced glulam wooden members by NSM steel bars and shear reinforcement CFRP sheet. Open Eng. 2023, 13, 20220481. https://doi.org/10.1515/eng-2022-0481.
2. Vahedian, A.
Shrestha, R.
Crews, K. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments. Compos. Part B Eng. 2019, 164, 377–389.
3. Thorhallsson, E.R.
Hinriksson, G.I.
Snæbjörnsson, J.T. Strength and stiffness of glulam beams reinforced with glass and basalt fibers. Compos. Part B Eng. 2017, 115, 300–307.
4. Al-Katib, H.A.A.
Alkhudery, H.H.
Al-Tameemi, H.A. Structural behavior of standard timber beams strengthened using CFRP sheet. Asian J. Civ. Eng. 2022, 23, 727–739, https://doi.org/10.1007/s42107-022-00452-w.
5. Yoresta, F.S.
Bogor Agricultural University
Nugroho, N. Strengthening of Timber Beam with Cold-Formed Steel Plates. Int. J. Sustain. Constr. Eng. Technol. 2023, 14, 306–314, https://doi.org/10.30880/ijscet.2023.14.01.028.
6. Rescalvo, F.J.
Valverde-Palacios, I.
Suarez, E.
Gallego, A. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips. Compos. Struct. 2018, 186, 29–38, https://doi.org/10.1016/j.compstruct.2017.11.078.
7. Śliwa-Wieczorek, K.
Ostrowski, K.A.
Jaskowska-Lemańska, J.
Karolak, A. The Influence of CFRP Sheets on the Load-Bearing Capacity of the Glued Laminated Timber Beams under Bending Test. Materials 2021, 14, 4019, https://doi.org/10.3390/ma14144019.
8. Ghanbari Ghazijahani, T.
Jiao, H.
Holloway, D. Composite Timber Beams Strengthened by Steel and CFRP. J. Compos. Con-str. 2017, 21, 04016059, https://doi.org/10.1061/(asce)cc.1943-5614.0000714.
9. Dar, M.A.
Subramanian, N.
Anbarasu, M.
Carvalho, H.
Dar, A.R. Effective Strengthening of Timber Beams: Experimental Investigation. Prac. Period. Struct. Des. Constr. 2021, 26, 04020042, https://doi.org/10.1061/(asce)sc.1943-5576.0000532.
10. Falk, L.H. Wood as a sustainable building material. In Wood Handbook–Wood as an Engineering Material, Centennial Edition
Ross, R.J., Ed.
Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010
p. 1.
11. Uzel, M.
Togay, A.
Anil, Ö.
Söğütlü, C. Experimental investigation of flexural behavior of glulam beams reinforced with different bonding surface materials. Constr. Build. Mater. 2018, 158, 149–163, https://doi.org/10.1016/j.conbuildmat.2017.10.033.
12. Junior, A.F.d.V.
Vicente, W.M. Innovative Approach for Enhancing GLULAM Performance with Reinforcing Steel Bars: A BESO-based Study. Lat. Am. J. Solids Struct. 2023, 20, e503, https://doi.org/10.1590/1679-78257558.
13. Kremer, P.D.
Symmons, M.A. Mass timber construction as an alternative to concrete and steel in the Australia building industry: A PESTEL evaluation of the potential. Int. Wood Prod. J. 2015, 6, 138–147, https://doi.org/10.1179/2042645315y.0000000010.
14. Lall, J.
Oh, T.
Shilstone, M. Central City Association, White Paper: Mass Timber A Faster, More Affordable, and More Sustainable Way To Build Housing, Technical Report
Central City Association: Los Angeles, CA, USA, 2019.
15. Gustavsson, L.
Pingoud, K.
Sathre, R. Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings. Mitig. Adapt. Strat. Glob. Chang. 2006, 11, 667–691, https://doi.org/10.1007/s11027-006-7207-1.
16. Huang, S.
Yan, L.
Kasal, B. Flexural behaviour of wood beams strengthened by flax-glass hybrid FRP subjected to hygro-thermal and weathering exposures. Constr. Build. Mater. 2023, 365, 130076. https://doi.org/10.1016/j.conbuildmat.2022.130076.
17. Wdowiak-Postulak, A. Strengthening of Structural Flexural Glued Laminated Beams of Ashlar with Cords and Carbon Laminates. Materials 2022, 15, 8303, https://doi.org/10.3390/ma15238303.
18. Socha, T.
Kula, K.
Denisiewicz, A.
Lesiuk, G.
Błażejewski, W. Rheological Relaxation of OSB Beams Reinforced with CFRP Composites. Materials 2021, 14, 7527, https://doi.org/10.3390/ma14247527.
19. Wdowiak-Postulak, A. Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials 2021, 14, 51. https://doi.org/10.3390/ma14010051.
20. Chybiński, M.
Polus, Ł. Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections. Appl. Sci. 2023, 13, 1603.
21. Wdowiak-Postulak, A. Ductility load capacity and bending stiffness of Scandinavian pine beams from waste timber strengthened with jute fibres. Drewno 2022, 65 (210). https://doi.org/10.12841/wood.1644-3985.417.01.
22. Chybiński, M.
Polus, Ł. Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections. Constr. Build. Mater. 2019, 226, 317–330, https://doi.org/10.1016/j.conbuildmat.2019.07.101.
23. Wdowiak-Postulak, A. Numerical, theoretical and experimental models of the static performance of timber beams rein-forced with steel, basalt and glass pre-stressed bars. Compos. Struct. 2023, 305, 116479. https://doi.org/10.1016/j.compstruct.2022.116479.
24. Wdowiak-Postulak, A.
Bahleda, F.
Prokop, J. An Experimental and Numerical Analysis of Glued Laminated Beams Strengthened by Pre-Stressed Basalt Fibre-Reinforced Polymer Bars. Materials 2023, 16, 2776, https://doi.org/10.3390/ma16072776.
25. Kawecki, B.
Sumorek, A. Study on Profitability of Combining Wood and CFRP into Composite Based on Mechanical Per-formance of Bent Beams. Appl. Sci. 2022, 12, 10304, https://doi.org/10.3390/app122010304.
26. Wdowiak-Postulak, A.
Wieruszewski, M.
Bahleda, F.
Prokop, J.
Brol, J. Fibre-Reinforced Polymers and Steel for the Rein-forcement of Wooden Elements—Experimental and Numerical Analysis. Polymers 2023, 15, 2062, https://doi.org/10.3390/polym15092062.
27. Chybiński, M.
Polus, Ł. Experimental and numerical investigations of aluminium-timber composite beams with bolted connections. Structures 2021, 34, 1942–1960.
28. Kawecki, B. Dobór Parametrów Modeli Obliczeniowych Pełnych Dźwigarów z Kompozytów Drewno-Polimerowych Zbrojonych Włóknami. Ph.D. Thesis, Lublin University of Technology, Lublin, Poland, 2020.
29. Nadir, Y.
Nagarajan, P.
Ameen, M.
M, M.A. Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Constr. Build. Mater. 2016, 112, 547–555, https://doi.org/10.1016/j.conbuildmat.2016.02.133.
30. Bal, B.C. Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Constr. Build. Mater. 2014, 51, 9–14, https://doi.org/10.1016/j.conbuildmat.2013.10.041.
31. Zhang, W.
Yang, P.
Cao, Y.
Yu, P.
Chen, M.
Zhou, X. Evaluation of fiber surface modification via air plasma on the inter-facial behavior of glass fiber reinforced laminated veneer lumber composites. Constr. Build. Mater. 2020, 233, 117315. https://doi.org/10.1016/j.conbuildmat.2019.117315.
32. Omare, H. Timber Beam Steel Reinforced and Plastic Design. Available online: https://www.researchgate.net/publication/373864635_Timber_Beam_Steel_Reinforced_and_Plastic_Design (September 2023).
33. Maglad, A.M.
Mansour, W.
Fayed, S.
Tayeh, B.A.
Yosri, A.M.
Hamad, M. Experimental Study of the Flexural Behaviour of RC Beams Made of Eco-friendly Sawdust Concrete and Strengthened by a Wooden Plate. Int. J. Concr. Struct. Mater. 2023, 17, 49. https://doi.org/10.1186/s40069-023-00617-0.
34. Gand, A.K.
Yeboah, D.
Khorami, M.
Olubanwo, A.O.
Lumor, R. Behaviour of strengthened timber beams using near sur-face mounted Basalt Fibre Reinforced Polymer (BFRP) rebars. Eng. Solid Mech. 2018, 6, 341–352, https://doi.org/10.5267/j.esm.2018.7.001.
35. Borri, A.
Corradi, M. Strengthening of timber beams with high strength steel cords. Compos. Part B Eng. 2011, 42, 1480–1491, https://doi.org/10.1016/j.compositesb.2011.04.051.
36. Soriano, J.
Pellis, B.P.
Mascia, N.T. Mechanical performance of glued-laminated timber beams symmetrically reinforced with steel bars. Compos. Struct. 2016, 150, 200–207, https://doi.org/10.1016/j.compstruct.2016.05.016.
37. Jasieńko, J.
Nowak, T.P. Solid timber beams strengthened with steel plates—Experimental studies. Constr. Build. Mater. 2014, 63, 81–88, https://doi.org/10.1016/j.conbuildmat.2014.04.020.
38. Borri, A.
Corradi, M.
Speranzini, E. Reinforcement of wood with natural fibers. Compos. Part B Eng. 2013, 53, 1–8, https://doi.org/10.1016/j.compositesb.2013.04.039.
39. Chen, S.
Wei, Y.
Peng, D.
Zhao, K.
Hu, Y. Experimental investigation of timber beams strengthened by bamboo scrimber with anchorage structure. Structures 2021, 33, 1–11, https://doi.org/10.1016/j.istruc.2021.04.038.
40. Franzoni, L.
Lebée, A.
Lyon, F.
Forêt, G. Closed-form solutions for predicting the thick elastic plate behavior of CLT and timber panels with gaps. Eng. Struct. 2018, 164, 290–304, https://doi.org/10.1016/j.engstruct.2018.02.073.
41. Xian, G.
Guo, R.
Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2021, 281, 115060, https://doi.org/10.1016/j.compstruct.2021.115060.
42. Lal, H.M.
Uthaman, A.
Li., C.
Xian, G.
Thomas, S. Combined Effects of Cyclic/Sustained Bending Loading and Water Im-mersion on the Interface Shear Strength of Carbon/Glass Fiber Reinforced Polymer Hybrid Rods for Bridge Cable. Constr. Build. Mater. 2022, 314, 125587.
43. PN-D-94021:2013-10
Coniferous construction timber sorted by strength methods
Polish Committee for Standardization: Warsaw, Poland, 2013.
44. PN-EN 408+A1:2012
Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. Polish Committee for Standardization: Warsaw, Poland, 2012.
45. PN-77/D-04229
Wood. Determination of Compressive Strength along the Fibers. Polish Committee for Standardization: Warsaw, Poland, 1977.
46. PN-79/D-04102
Wood—Determination of Compressive Strength along the Grain. Polish Committee for Standardization: Warsaw, Poland, 1979.
47. PN-79/D-04105
Wood. Determination of Shear Strength along Fibers. Polish Committee for Standardization: Warsaw, Po-land, 1979.
48. PN-81/D-04107
Wood. Determination of Tensile Strength along Fibers. Polish Committee for Standardization: Warsaw, Poland, 1981.
49. PN-81/D-04108
Wood. Determination of Tensile Strength across the Fibers. Polish Committee for Standardization: Warsaw, Poland, 1981.
50. PN-H-93220:2018-02
Concrete Reinforcement Steel—Weldable Reinforcing Steel B500SP—Ribbed Bars and Wire Rod. Polish Committee for Standardization: Warsaw, Poland, 2018.
51. GOST 31938:2012
Fiber-Reinforced Polymer Bar for Concrete Reinforcement—General Specifications. Interstandard: Mos-cow Russia, 2012.
52. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/resin55_hp_polska_ver20190523.pdf (03.2019).
53. Kliger, I.R.
Haghani, R.
Brunner, M.
Harte, A.M.
Schober, K.-U. Wood-based beams strengthened with FRP laminates: Improved performance with pre-stressed systems. Eur. J. Wood Wood Prod. 2016, 74, 319–330, https://doi.org/10.1007/s00107-015-0970-5.
54. Lehmann, M.
Properzi, M.
Pichelin, F.
Triboulet, P. Pre-stressed FRP for the in situ strengthening of timber structures. In Proceedings of the World Conference on Timber Engineering (WCTE 2006), Portland, OR, USA, 6–10 August 2006.
55. Haghani, R.
Al-Emrani, M. A new method and device for application of bonded prestressed FRP laminates. In Proceedings of the Second International Conference on Advances I Civil and Structural Engineering, Kuala Lampur, Malaysia, 20–21 December 2014
ISBN 978-1-63248-035-4.
56. Dagher, H.
Gray, H.
Davids, W.
Silva-Hernandez, R.
Nader, J. Variable prestressing of FRP-reinforced glulam beams: Methodology and behaviour. In Proceedings of the World Conference on Timber Engineering (WCTE 2010), Riva del Garda, Italy, 20–24 June 2010.
57. Halicka, A.
Ślósarz, S. Strengthening of timber beams with pretensioned CFRP strips. Structures 2021, 34, 2912–2921.
58. Guan, Z.
Rodd, P.
Pope, D. Study of glulam beams pre-stressed with pultruded GRP. Comput. Struct. 2005, 83, 2476–2487, https://doi.org/10.1016/j.compstruc.2005.03.021.
59. Yahyaei-Moayyed, M.
Taheri, F. Creep response of glued-laminated beam reinforced with pre-stressed sub-laminated composite. Constr. Build. Mater. 2011, 25, 2495–2506, https://doi.org/10.1016/j.conbuildmat.2010.11.078.
60. Raftery, G.M.
Whelan, C. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Constr. Build. Mater. 2014, 52, 209–220, https://doi.org/10.1016/j.conbuildmat.2013.11.044.