Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[127350] Artykuł:

Experimental Investigation of Amplitude-Modulated Waves for Flame Extinguishing: A Case of Acoustic Environmentally Friendly Technology

Czasopismo: Environmental and Climate Technologies   Tom: 27, Zeszyt: 1, Strony: 627-638
ISSN:  2255-8837
Opublikowano: Listopad 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jacek Wilk-Jakubowski orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne100100.00100.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Acoustic flame extinguishing  environmentally friendly technology  electrical engineering  fire management  firefighting  zero emission technology. 



Abstract:

Flame extinguishing methods that are safe for humans and non-invasive to the surrounding environment are being sought worldwide. One of them is acoustic technology, which appears to be an innovative and non-invasive means for flame extinguishing. A high-power and long-range extinguisher was built to explore the possibility of using this environmentally friendly technology. The article includes experimental results, obtained from a laboratory stand, on the possibility of extinguishing flames using amplitude-modulated waves depending on the frequency of the acoustic wave and the distance of the flame source from the extinguisher outlet, which is a scientific novelty. The advantages and disadvantages of acoustic technology are also analysed. The paper concludes that low-frequency acoustic waves are favourable for extinguishing flames because they cause more turbulence in the flame, and thus have a higher extinguishing efficiency. The results are promising and acoustic waves may be used to successfully extinguish flames in a wide range of firefighting scenarios in the future.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Loboichenko V., Wilk-Jakubowski J., Wilk-Jakubowski G., Harabin R., Shevchenko R., Strelets V., Levterov A., Soshinskiy A., Tregub N.,Antoshkin O. The Use of Acoustic Effects for the Prevention and Elimination of Fires as an Element of Modern Environmental Technologies. Environmental and Climate Technologies 2022:26(1):319–330. https://doi.org/10.2478/rtuect-2022-0024
[2] Ivanov S., Stankov S. Acoustic Extinguishing of Flames Detected by Deep Neural Networks in Embedded Systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021:XLVI-4/W5-2021:307–312. https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-307-2021
[3] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. Control of acoustic extinguisher with Deep Neural Networks for fire detection. Elektronika ir Elektrotechnika 2022:28(1):52–59. https://doi.org/10.5755/j02.eie.24744
[4] Ivanov S., Stankov S., Wilk-Jakubowski J., Stawczyk P. The using of Deep Neural Networks and acoustic waves modulated by triangular waveform for extinguishing fires. Presented at International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020), Technical University of Sofia, Sofia, Bulgaria, 2020. New Approaches for Multidimensional Signal Processing (‘Smart Innovation, Systems and Technologies’ series) 2021:216:207–218. https://doi.org/10.1007/978-981-33-4676-5_16
[5] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. The using of Deep Neural Networks and natural mechanisms of acoustic waves propagation for extinguishing flames. International Journal of Computational Vision and Robotics 2022:12(2):101–119. https://doi.org/10.1504/IJCVR.2021.10037050
[6] Ivanov S., Stankov S. The Artificial Intelligence Platform with the Use of DNN to Detect Flames: A Case of Acoustic Extinguisher. Lecture Notes in Networks and Systems 2022:371:24–34. https://doi.org/10.1007/978-3-030-93247-3_3
[7] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. High-power acoustic fire extinguisher with artificial intelligence platform. International Journal of Computational Vision and Robotics 2022:12(3):236–249. https://doi.org/10.1504/IJCVR.2021.10039861
[8] Sharma D., Sharma B., Mantri A., Goyal N., Singla N. Dhwani Fire: Aerial System for Extinguishing Fire. ECS Transactions 2022:107(1):10295–10301. https://doi.org/10.1149/10701.10295ecst
[9] Li Y., Zhang Y., Pan A., Han M., Veglianti E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technology in Society 2022:70:102034. https://doi.org/10.1016/j.techsoc.2022.102034
[10] Chiou M., Epsimos G.-T., Nikolaou G., Pappas P., Petousakis G., Muhl S., Stolkin R. Robot-Assisted Nuclear Disaster Response: Report and Insights from a Field Exercise. Presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, 2022. https://doi.org/10.1109/IROS47612.2022.9981881
[11] Szcześniak A., Szcześniak Z. Algorithmic Method for the Design of Sequential Circuits with the Use of Logic Elements. Applied Sciences 2021:11(23):11100. https://doi.org/10.3390/app112311100
[12] Wilk-Jakubowski G., Harabin R., Ivanov S. Robotics in crisis management: a review. Technology in Society 2022:68:101935. https://doi.org/10.1016/j.techsoc.2022.101935
[13] Wilk-Jakubowski G., Harabin R., Skoczek T., Wilk-Jakubowski J. Preparation of the Police in the Field of Counter-terrorism in Opinions of the Independent Counter-terrorist Sub-division of the Regional Police Headquarters in Cracow. Slovak Journal of Political Sciences 2022:22(2):174–208 [Online]. [Accessed 20.02.2023]. Available: http://sjps.fsvucm.sk/index.php/sjps/article/view/355
[14] Ma Y., Jiang H., Li J., Yu H., Li C., Zhang D. Design of Marine Satellite Communication System Based on VSAT Technique. Presented at International Conference on Computer, Internet of Things and Control Engineering (CITCE), Guangzhou, 2021. https://doi.org/10.1109/CITCE54390.2021.00031
[15] Šerić L., Stipanicev D., Krstinić D. ML/AI in Intelligent Forest Fire Observer Network. Presented at International Conference on Management of Manufacturing Systems (Conference 3rd EAI 2018), Dubrovnik, 2018. https://doi.org/10.4108/eai.6-11-2018.2279681
[16] Wilk-Jakubowski J. Predicting Satellite System Signal Degradation due to Rain in the Frequency Range of 1 to 25 GHz. Pol. J. Environ. Stud. 2018:27(1):391–396. https://doi.org/10.15244/pjoes/73906

[17] Azarenko O., Honcharenko Y., Divizinyuk M., Mirnenko V., Strilets V., Wilk-Jakubowski J. L. Influence of anthropogenic factors on the solution of applied problems of recording language information in the open area. Journal of Scientific Papers ʽʽSocial Development and Security’’ 2022:12(3):135–143. https://doi.org/10.33445/sds.2022.12.3.12
[18] Wilk-Jakubowski J. Total Signal Degradation of Polish 26-50 GHz Satellite Systems Due to Rain. Pol. J. Environ. Stud. 2018:27(1):397–402. https://doi.org/10.15244/pjoes/75179
[19] Azarenko O., Honcharenko Y., Divizinyuk M., Mirnenko V., Strilets V., Wilk-Jakubowski J. L. The influence of air environment properties on the solution of applied problems of capturing speech information in the open terrain. Journal of Scientific Papers ʽʽSocial Development and Security’’ 2022:12(2):64–77. https://doi.org/10.33445/sds.2022.12.2.6
[20] Wilk-Jakubowski J. Measuring Rain Rates Exceeding the Polish Average by 0.01%. Pol. J. Environ. Stud. 2018:27(1):383–390. https://doi.org/10.15244/pjoes/73907
[21] Wilk-Jakubowski J. Information systems engineering using VSAT networks. Yugoslav Journal of Operations Research 2021:31(3):409–428. https://doi.org/10.2298/YJOR2002
[22] Feofilovs M., Romagnoli F. Assessment of Urban Resilience to Natural Disasters with a System Dynamics Tool: Case Study of Latvian Municipality. Environmental and Climate Technologies 2020:24(3):249–264. https://doi.org/10.2478/rtuect-2020-0101
[23] Pagano A., Romagnoli F., Vannucci E. Insurance against Natural Hazards: Critical Elements on the Risk Premium Evaluation in the Italian Context. Environmental and Climate Technologies 2020:24(3):373–386. https://doi.org/10.2478/rtuect-2020-0110
[24] Deniziak S., Płaza M., Arcab, Ł. Approach for Designing Real-Time IoT Systems. Approach for Designing Real-Time IoT Systems. Electronics 2022:11:4120. https://doi.org/10.3390/electronics11244120
[25] Szcześniak A., Szcześniak Z., Cedro L. Synthesis of Pneumatic Systems in the Control of the Transport Line of Rolling Elements. Acta Mechanica et Automatica 2023:17(2):254–262. https://doi.org/10.2478/ama-2023-0029
[26] Poczęta K., Płaza M., Michno T., Krechowicz M., Zawadzki M. A multi-label text message classification method designed for applications in call/contact centre systems. Applied Soft Computing 2023:145:110562. https://doi.org/10.1016/j.asoc.2023.110562
[27] Pronobis M. Modernizacja kotłów energetycznych. Warszawa: Wydawnictwo Naukowo-Techniczne, 2002.
[28] Jędrusyna A., Noga A. Wykorzystanie generatora fal infradźwiękowych dużej mocy do oczyszczania z osadów powierzchni grzewczych kotłów energetycznych. Piece Przem. & Kotły 2012:11-12:30–37 [Online]. [Accessed 20.12.2022]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-ef5dde46-0642-445d-a573-1b7e2fa266e4
[29] Noga A. Przegląd obecnego stanu wiedzy z zakresu techniki infradźwiękowej i możliwości wykorzystania fal akustycznych do oczyszczania urządzeń energetycznych. Zeszyty Energetyczne 2014:1:225–234 [Online]. [Accessed 20.12.2022]. Available: http://ze.pwr.edu.pl/wp-content/uploads/2018/03/ZE_1_23_Noga.pdf
[30] Niegodajew P., Łukasiak K., Radomiak H., Musiał D., Zajemska M., Poskart A., Gruszka K. Application of acoustic oscillations in quenching of gas burner flame. Combustion and Flame 2018:194:245–249. https://doi.org/10.1016/j.combustflame.2018.05.007
[31] Niegodajew P., Gruszka K., Gnatowska R., Šofer M. Application of acoustic oscillations in flame extinction in a presence of obstacle. Presented at XXIII Fluid Mechanics Conference (KKMP 2018). IOP Conf. Series Journal of Physics (Conf. Series 1101), Zawiercie, 2018. https://doi.org/10.1088/1742-6596/1101/1/012023
[32] Krumov K. Ucheni ot Blgarija I Polsha sjzdadoha umen pozharogasitelj (Scientists from Bulgaria and Poland have created a smart fire extinguisher) [Online]. [Accessed 05.07.2020]. Available: https://www.monitor.bg/bg/a/view/ucheni-otbylgarija-i-polsha-syzdadoha-umen-pojarogasitel-206283 (in Bulgarian)
[33] Zdziebłowski Sz. Kielce/Akustyczna gaśnica powstała na Politechnice Świętokrzyskiej (Kielce/Acoustic fire extinguisher was built at the Kielce University of Technology) [Online]. [Accessed 05.07.2020]. Available: https://naukawpolsce.pl/aktualnosci/news%2C82488%2Ckielce-akustyczna-gasnica-powstala-na-politechnice-swietokrzyskiej.html (in Polish)
[34] Błoński M. Polski inżynier stworzył gaśnicę tłumiącą pożar za pomocą... dźwięku (A Polish engineer has created a fire extinguisher that suppresses fire using... sound) [Online]. [Accessed 05.07.2020]. Available: https://kopalniawiedzy.pl/gasnica-dzwiek-Politechnika-Swietokrzyska,32142 (in Polish)
[35] Kapiszewski J. Pali się, podkręć basy [EUREKA DGP] (Fire, turn up the bass [EUREKA DGP]) [Online]. [Accessed 05.07.2020]. Available: https://biznes.gazetaprawna.pl/artykuly/1475298,glosniki-ktore-moga-gasic-pozary.html (in Polish)
[36] Wawainfo. Polak wynalazł rewolucyjne urządzenie. Gaszenie pożarów bez wody. Będzie przełom? (A Pole has invented a revolutionary device. Putting out fires without water. Will there be a breakthrough?) [Online]. [Accessed 05.07.2020]. Available: https://wawainfo.pl/jacek-wilk-jakubowski-jb-wmd-050620-gaszenie-pozaru-dzwiekiem (in Polish)
[37] Maj K. Czy można zgasić pożar dźwiękiem? Polacy udowodnili, że tak (Is it possible to extinguish a fire with sound? Poles have proven that it is) [Online]. [Accessed 05.07.2020]. Available: https://dobrewiadomosci.net.pl/42215-czy-mozna-zgasic-pozar-dzwiekiem-polacy-udowodnili-ze-tak (in Polish)
[38] Chiny Tech. Polski inżynier stworzył gaśnicę akustyczną (Polish engineer created an acoustic fire extinguisher) [Online]. [Accessed 05.07.2020]. Available: https://chinytech.pl/2020/06/polski-inzynier-stworzyl-gasnice-akustyczna (in Polish)
[39] Janowski S. Polski wynalazek zrewolucjonizuje pracę strażaków. Będą gasić pożary dźwiękiem (A Polish invention will revolutionize the work of firefighters. They will extinguish fires with sound) [Online]. [Accessed 20.03.2022]. Available: https://techgame.pl/wynalazek-110620-sj-akustyczna-gasnica-pozar (in Polish)
[40] McKinney D.J., Dunn-Rankin D. Acoustically driven extinction in a droplet stream flame. Combustion Science and Technology 2007:161:27–48. https://doi.org/10.1080/00102200008935810
[41] Stawczyk P., Wilk-Jakubowski J. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher. Open Engineering 2021:11(1):349–355. https://doi.org/10.1515/eng-2021-0037
[42] Wilk-Jakubowski J. Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques. Symmetry 2021:13(7):1299. https://doi.org/10.3390/sym13071299
[43] Khrystoslavenko O., Grubliauskas R. Experimental Studies of the Sound Scattering Coefficient of the Diffuser in the Reverberation Chamber. Environmental and Climate Technologies 2023:27(1):464–475. https://doi.org/10.2478/rtuect-2023-0034
[44] Radomiak H., Mazur M., Zajemska M., Musiał D. Gaszenie płomienia dyfuzyjnego przy pomocy fal akustycznych. Bezpieczeństwo i Technika Pożarnicza 2015:40(4):29–38. https://doi.org/10.12845/bitp.40.4.2015.2
[45] Węsierski T., Wilczkowski S., Radomiak H. Wygaszanie procesu spalania przy pomocy fal akustycznych. Bezpieczeństwo i Technika Pożarnicza 2013:30(2):59–64.
[46] Friedman A. N., Stoliarov S.I. Acoustic extinction of laminar line-flames. Fire Safety Journal 2017:93:102–113. https://doi.org/10.1016/j.firesaf.2017.09.002
[47] Kornilov V. N., Schreel K., De Goey L. P. H. Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proceedings of the Combustion Institute 2007:31(1):1239–1246. https://doi.org/10.1016/j.proci.2006.07.079
[48] Karimi N. Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories. Energy 2014:78:490–500. https://doi.org/10.1016/j.energy.2014.10.036
[49] Magina N., Steele W., Emerson B., Lieuwen T. Spatio-temporal evolution of har-monic disturbances on laminar, non-premixed flames: Measurements and analysis. Combustion and Flame 2016:180:262–75. https://doi.org/10.1016/j.combustflame.2016.09.001
[50] Kashinath K., Waugh I. C., Juniper M. P. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. Journal of Fluid Mechanics 2014:761:399–430. https://doi.org/10.1017/jfm.2014.601
[51] Kozlov V. V., Grek G. R., Korobeinichev O. P., Litvinenko Y. A., Shmakov A. G. Combustion of hydrogen in round and plane microjets in transverse acoustic field at small Reynolds numbers as compared to propane combustion in the same conditions. International Journal of Hydrogen Energy 2016:41(44):20231–20239. https://doi.org/10.1016/j.ijhydene.2016.07.276
[52] Chen L. W., Zhang Y. Experimental observation of the nonlinear coupling of flame flow and acoustic wave. Flow Measurement and Instrumentation 2015:4612–17. https://doi.org/10.1016/j.flowmeasinst.2015.09.001
[53] Im H. G., Law C. K., Axelbaum R. L. Opening of the Burke-Schumann Flame Tip and the Effects of Curvature on Diffusion Flame Extinction. Proceedings of the Combustion Institute 1990:23(1):551–558. https://doi.org/10.1016/S0082-0784(06)80302-4
[54] Marek M. Wykorzystanie ekonometrycznego modelu klasycznej funkcji regresji liniowej do przeprowadzenia analiz ilościowych w naukach ekonomicznych. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne. Kielce: Wydawnictwo Wyższej Szkoły Handlowej im. Bolesława Markowskiego w Kielcach, 2013.
[55] Marek M. Bayesian Regression Model Estimation: A Road Safety Aspect. In: Ahmed M.B., Boudhir A.A., Karaș İ.R., Jain V., Mellouli S. (Eds.) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems 2022:393. https://doi.org/10.1007/978-3-030-94191-8_13
[56] Marek M. Aspects of Road Safety: A Case of Education by Research – Analysis of Parameters Affecting Accident. Presented at The Education and Research in the Information Society Conference (ERIS), Plovdiv, 2021 [Online]. [Accessed 10.12.2022]. Available: https://ceur-ws.org/Vol-3061/ERIS_2021-art07(reg).pdf
[57] Strelets V. V., Loboichenko V. M., Leonova N. A., Shevchenko R. I., Strelets V. M., Pruskyi A. V., Avramenko O. V. Comparative assessment of environmental parameters of foaming agents based on synthetic hydrocarbon used for extinguishing the fires of oil and petroleum products. SOCAR Proceedings 2021:2:1–10. https://doi.org/10.5510/OGP2021SI200537
[58] Rabajczyk A., Zielecka M., Gniazdowska J. Application of Nanotechnology in Extinguishing Agents. Materials 2022:15(24):8876. https://doi.org/10.3390/ma15248876
[59] Yılmaz-Atay H, Wilk-Jakubowski J.L. A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering. Polymers 2022:14(6):1224. https://doi.org/10.3390/polym14061224
[60] Wilk-Jakubowski J. L, Loboichenko V., Wilk-Jakubowski G., Yılmaz-Atay H., Harabin R., Ciosmak J., Ivanov S., Stankov S. Acoustic firefighting method on the basis of European research: a review. Akustika 2023:46(46):31–45. https://doi.org/10.36336/akustika20234631
[61] Vovchuk T. S., Wilk-Jakubowski J. Ł., Telelim V. M., Loboichenko V. M., Shevchenko R. I., Shevchenko O. S., Tregub N. S. Investigation of the use of the acoustic effect in extinguishing fires of oil and petroleum products. SOCAR Proceedings 2021:2:24–31. https://doi.org/10.5510/OGP2021SI200602
[62] Shevchenko R. I., Strelets V. M., Loboichenko V. M., Pruskyi A. V., Myroshnyk O. N., Kamyshentsev G.V. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Proceedings 2021:1:169–174. https://doi.org/10.5510/OGP2021SI100519
[63] Yi E. Y., Lee E, Bae M.J. A study on the directionality of sound fire extinguisher in electric fire. Convergence Research Letter of Multimedia Services Convergent with Art, Humanities, and Sociology 2017:3(4):1449–1452.
[64] Tiwari R. G., Agarwal A. K., Jindal R. K., Singh A. Experimental Evaluation of Boosting Algorithms for Fuel Flame Extinguishment with Acoustic Wave. Presented at International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakheer, 2022. https://doi.org/10.1109/3ICT56508.2022.9990779
[65] Taspinar Y.S., Koklu M., Altin M. Classification of flame extinction based on acoustic oscillations using artificial intelligence methods. Case Studies in Thermal Engineering 2021:28:101561. https://doi.org/10.1016/j.csite.2021.101561
[66] Li Q., Li Z., Chen R., Zhang Z., Ge H., Zhou X., Pan R. Numerical study on effects of pipeline geometric parameters on release characteristics of gas extinguishing agent. Symmetry 2021:13(10):1766. https://doi.org/10.3390/sym13101766