Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[126390] Artykuł:

Robust and reliability-based design optimization of steel beams

(Optymalizacja odpornościowa i niezawodnościowa stalowych belek)
Czasopismo: Archives of Civil Engineering   Tom: 69, Zeszyt: 4, Strony: 125-140
ISSN:  1230-2945
Opublikowano: 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3370.0070.00  
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3370.0070.00  
Piotr Tauzowski Niespoza "N" jednostki33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140



Słowa kluczowe:

Analiza niezawodnościowa pierwszego rzędu  wskaźnik niezawodności  optymalizacja niezawodnościowa  optymalizacja odpornościowa 


Keywords:

reliability index  robust optimization  reliability-based design optimization  first order reliability method 



Streszczenie:

Zgodnie z zasadami nowoczesnego projektowania konstrukcja budynku powinna być nie tylko bezpieczna, ale także zoptymalizowana. W optymalizacji deterministycznej niepewności konstrukcji nie są bezpośrednio brane pod uwagę. Tradycyjnie niepewności układu konstrukcyjnego (tj. parametry materiałów, obciążenia, wymiary przekrojów) są uwzględniane za pomocą częściowych współczynników bezpieczeństwa określonych w przepisach projektowych. Warto zauważyć, że struktury optymalne są wrażliwe na losowość parametrów projektowych, a deterministyczne rozwiązania optymalne mogą prowadzić do obniżenia poziomu niezawodności. Naturalne wydaje się zatem rozszerzenie sformułowania optymalizacji deterministycznej o losowy rozrzut wartości parametrów. Takie sformułowanie zapewnia solidna optymalizacja i optymalizacja projektu oparta na niezawodności. Możliwość zastosowania RBDO jest silnie uzależniona od dostępności wspólnej funkcji gęstości prawdopodobieństwa. Sformułowanie optymalizacji niedeterministycznej, które lepiej dostosowuje się do realiów projektowych, to optymalizacja solidna. W przeciwieństwie do optymalizacji RBDO, sformułowanie to nie wymaga szacowania prawdopodobieństwa awarii. W artykule na przykładach belek stalowych autorzy porównują mocne i słabe strony obu receptur.




Abstract:

In line with the principles of modern design a building structure should not only be safe but also optimized. In deterministic optimization, the uncertainties of the structures are not explicitly taken into account. Traditionally, uncertainties of the structural system (i.e. material parameters, loads, dimensions of the cross-sections) are considered by means of partial safety factors specified in design codes. Worth noticing, that optimal structures are sensitive to randomness design parameters and deterministic optimal solutions may lead to reduced reliability levels. It therefore seems natural to extend the formulation of deterministic optimization with the random scatter of parameter values. Such a formulation is offered by robust optimization and reliability-based design optimization. The applicability of RBDO is strongly dependent on the availability of the joint probability density function. A formulation of non-deterministic optimization that better adapts to the design realities is robust optimization. Unlike RBDO optimization, this formulation does not require estimation of failure probabilities. In the paper using the examples of steel beams, the authors compare the strengths and weaknesses of both formulations.



B   I   B   L   I   O   G   R   A   F   I   A
[1] P. Szeptyński, L. Mikulski, “Preliminary optimization technique in the design of steel girgers according to Eurocode 3”, Archives of Civil Engineering, vol. 69, no. 1, pp. 71-89, 2023, DOI: 10.24425/ace.2023.144160
[2] R. H. Lopez, A.T. Beck, „Reliability-based design optimization strategies based on FORM: a review”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 34, no. 4, pp. 506-514, 2012, DOI: 10.1590/S1678-58782012000400012
[3] Y. Aoues, A. Chateauneuf, „Benchmark study of numerical methods for reliability-based design optimization”, Structural and Multidisciplinary Optimization, vol. 41, no. 2, pp. 277-294, 2010, DOI: 10.1007/s00158-009-0412-2
[4] A.T. Beck, W. J.S. Gomes, R. H. Lopez and L.F.F. Miguel, “A comparison between robust and risk-based optimization under uncertainty”, Structural and Multidisciplinary Optimization, vol. 52, no. 3, pp. 479 – 492, 2015, DOI: 10.1007/s00158-015-1253-9
[5] N. Kuschel and R. Rackwitz, „Two basic problems in reliability-based structural optimization.”, Mathematical Methods Operational Research, vol. 46, no 3, pp. 309–333, 1997, DOI: 10.1007/BF01194859.
[6] B. D. Youn and K. K. Choi, „A new response surface methodology for reliability-based design optimization.”, Computers & Structures, vol. 82, no. 2–3, pp. 241–256, 2004, DOI: 10.1016/j.compstruc.2003.09.002.
[7] I. Doltsinis and Z. Kang, „Robust design of non-linear structures using optimization methods.”, Computer Methods Applied Mechanics and Engineering, vol. 194, no. 12–16, pp. 1179–1795, 2005, DOI: 10.1016/j.cma.2004.02.027.
[8] W. Chen, W. Fu, S. B. Biggers and R. A. Latour, „An affordable approach for robust design of thick laminated composite structure.”, Optimization and Engineering, vol. 1, no. 3, pp. 305–322, 2000, DOI: 10.1023/A:1010078107194.
[9] Y. Q. Li, Z. S. Cui, X. Y. Ruan and D. J. Zhang, „CAE-based six sigma robust optimization for deep-drawing sheet metal process.”, The International Journal of Advanced Manufacturing Technology, vol. 30, pp. 631– 637, 2006, DOI: 10.1007/s00170-005-0121-y.
[10] K.H. Hwang, K.-W. Lee and G.-J. Park, „Robust optimization of an automobile rearview mirror for vibration reduction.”, Structural and Multidisciplinary Optimization, vol. 21, no. 4, pp. 300–308, 2001, DOI: 10.1007/s001580100107.
[11] M. Rosenblatt, “Remarks on a Multivariate Transformation”, The Annals of Mathematical Statistic, vol. 23, no. 3, pp. 470-472, 1952.
[12] M. Hohenbichler, R. Rackwitz, “Non-normal dependent vectors in structural safety”, Journal of the Engineering Mechanics Division, ASCE, vol. 107, no. 6, pp. 1227-1238, 1981.
[13] M. Hohenbichler, S. Gollwitzer, W. Kruse and R. Rackwitz, „New light on first and second order reliability methods.”, Structural Safety, vol. 4, no. 4, pp. 267–284, 1987,
[14] A. Der Kiureghian, M. De Stefano, „Efficient algorithm for second-order reliability analysis.”, Journal of Engineering Mechanics, vol. 117, no. 12, pp. 2904–2923, 1991,
[15] A. Hasofer, N. Lind, „Exact and invariant second-moment code format”, Journal of the Engineering Mechanics Division, ASCE, vol. 100, no. 1, pp. 111-121, 1974.
[16] R. Rackwitz, B. Fiessler, „Structural reliability under combined random load sequences”, Computers & Structure, vol. 9, no. 5, pp. 489-494, 1978.
[17] A. Dudzik and U. Radoń, „The evaluation of algorithms for determination of the reliability index”, Archives of Civil Engineering , vol. 61, no. 3, pp. 133–147, 2015, DOI: 10.1515/ace-2015-0030.
[18] K. Kubicka, U. Radoń, „Proposal for the assessment of steel truss reliability under fire conditions”, Archives of Civil Engineering, vol. 61, no. 4, pp. 141–154, 2015, DOI: 10.1515/ace-2015-0041.
[19] K. Kubicka, U. Radoń, „Influence of the buckling coefficient randomness on the reliability index value under fire conditions”, Archives of Civil Engineering, vol. 64, no. 3, pp.173–179, 2018, DOI: 10.2478/ace-2018-0037.
[20] U. Radoń, W. Szaniec, P. Zabojszcza, „Probabilistic Approach to Limit States of a Steel Dome”, Materials, vol. 14, no. 19, p. 5528, 2021, DOI: 10.3390/ma14195528.
[21] P. Zabojszcza, U. Radoń, „The Impact of Node Location Imperfections on the Reliability of Single-Layer Steel Domes”, Applied Science-Basel, vol. 9, p. 2742, 2019, DOI: 10.3390/app9132742.
[22] A. Dudzik, B. Potrzeszcz-Sut, „Hybrid Approach to the First Order Reliability Method in the Reliability Analysis of a Spatial Structure”, Applied Science-Basel, vol. 11, no. 2, p. 648, 2021, DOI: 10.3390/app11020648.
[23] I. Enevoldsen, J. D. Sørensen, "Reliability-based optimization in structural engineering", Structural Safety, vol.15, no. 3, pp. 169-196, 1994, DOI: 10.1016/0167-4730(94)90039-6.
[24] N. Kuschel and R. Rackwitz, „Optimal design under time-variant reliability constraints”, Structural Safety, vol. 22, no. 2, pp. 113–128, 2000, DOI: 10.1016/S0167-4730(99)00043-0.
[25] H. Streicher, R. Rackwitz, „Reliability-oriented optimization for time-invariant problems with optimization algorithm JOINT 5, research report”, Technical Report Project 28159, 2001.
[26] H. Streicher, R. Rackwitz, „Structural optimization - a one level approach”, in S. Jendo, K. Doliński, M. Kleiber (eds.), AMAS Workshop on Reliability-Based Design and Optimization - RBO’02, 2002.
[27] G. Cheng, L. Xu, L. Jiang, “A sequential approximate programming strategy for reliability-based structural optimization”, Computer & Structure, vol. 84, no. 21, pp. 1353-1367, 2006, DOI: 10.1016/j.compstruc.2006.03.006.
[28] J. Ching, W.C. Hsu, "Transforming reliability limit state constraints into deterministic limit-state constraints", Structural Safety, vol. 30, no. 1, pp.11-33, 2008, DOI: 10.1016/j.strusafe.2006.04.002.
[29] http://www.Strurel.de [Accessed:27.11.2022]
[30] http://numpress.ippt.gov.pl/ [Accessed:27.11.2022]
[31] M.J. Sasena, et al., „Improving an ergonomic testing procedure via approximation-based adaptive experimental design”, ASME Journal of Mechanical Design, vol. 127, pp. 1006–1013, 2005, DOI: 10.1115/1.1906247.
[32] M. Liefvendahl, R. Stocki, “A study on algorithms for optimization of Latin hypercubes”, Journal of Statistical Planning and Inference, Vol. 136(9), pp. 3231–3247, 2006, DOI: 10.1016/j.jspi.2005.01.007.
[33] R. Stocki, K. Kolanek, J. Knabel, P. Tauzowski, “FE based structural reliability analysis using STAND environment”, Computer Assisted Mechanics and Engineering Sciences, Vol. 16, pp. 35-58, 2009.
[34] P. Zabojszcza, U. Radoń and P. Tauzowski, „Robust optimization of a single-layer lattice dome.” Modern Trends in Research on Steel, Aluminium and Composite Structures, 2021, DOI: 10.1201/9781003132134.
[35] R. Stocki, P. Tauzowski, J. Knabel, “Reliability analysis of a crashed thin-walled s-rail accounting for random spot weld failures”, International Journal of Crashworthiness, vol. 13(6), pp. 693–706, 2008, DOI: 10.1080/13588260802055213.