Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[126200] Artykuł:

Load bearing capacity analysis of concrete sidewalk system designed to ensure comfort of walking for people with a motor disability

(Analiza nośności betonowego chodnika zaprojektowanego w celu zapewnienia komfortu przemieszczania osobom z niepełnosprawnością ruchową)
Czasopismo: Road Materials and Pavement Design   Tom: 4, Zeszyt: 603, Strony: 0-1
ISSN:  1468-0629
Opublikowano: Pażdziernik 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Adam Kłak orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport33140.00140.00  
Magdalena Wojnowska-Heciak orcid logo Niespoza "N" jednostkiArchitektura i urbanistyka33.00.00  
Jakub Heciak orcid logo Niespoza "N" jednostkiArchitektura i urbanistyka33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

nawierzchnia betonowa 


Keywords:

concrete pavement 



Abstract:

The paper looks at a novel structural solution to sidewalks. The proposed system consists of a box element as a substructure and a concrete slab with openings for rainwater infiltration. Such a design will make the sidewalk comfortable for pedestrians with motor impairments, friendly for urban tree root systems and durable. The article provides stress and strain calculations for the variants of the new design. We used the finite element method for the analysis. The results confirm that the proposed variants meet the assumed strength criteria and can therefore be used in the next research steps, that is, permeability tests, rain-water retention simulations, laboratory testing.



B   I   B   L   I   O   G   R   A   F   I   A
Annex to Ordinance No. 31 of GDDKiA of June 16. (2014). In catalog of typical flexible and semi-rigid pavement structures (Vol. 16). Gdańsk University of Technology. [Google Scholar]
Bekeart, N. V. (1998). Steel Fiber Reinforced Industrial Floor (design in Accordance with the Concrete Society TR34). In Dramix manual, 44 PP. (pp. 10–11). [Google Scholar]
Catalog of typical rigid pavement structures/ Katalog typowych konstrukcji nawierzchni sztywnych. (2014). GDDKiA. [Google Scholar]
Chen, S.-H., Wu, C.-C., Li, P.-Y., & Adhitana Paramitha, P. (2017). Evaluation of pedestrian transportation facilities in Taiwan using linear regression and support vector regression. Road Materials and Pavement Design, 18(suppl 3), 170–179. https://doi.org/10.1080/14680629.2017.1329872 [Taylor & Francis Online], [Google Scholar]
Cińcio, A., Wawrzynek, A., & Pilśniak, J. (2007). Analiza numeryczna degradacji betonu z uwzględnieniem makrostruktury. Modelowanie Inżynierskie, 34(34), 5–10. [Google Scholar]
Coder, K. D. (1998). Root growth control: Managing perceptions and realities. In D. Neely, & G. Watson (Eds.), The landscape below ground II. Proceedings of a second international workshop on tree root development in urban soils (pp. 51–81). International Society of Arboriculture. [Google Scholar]
Elvidge, C., Tuttle, B., Sutton, P., Baugh, K., Howard, A., Milesi, C., Bhaduri, B., & Nemani, R. (2007). Global distribution and density of constructed impervious surfaces. Sensors, 7(9), 1962–1979. https://doi.org/10.3390/s7091962 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Farres, P. J. (1980). Some observations on the stability of soil aggregates to raindrop impact. CATENA, 7(1), 223–231. https://doi.org/10.1016/S0341-8162(80)80015-4 [Crossref], [Google Scholar]
Fini, A., Frangi, P., Mori, J., Donzelli, D., & Ferrini, F. (2017). Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environmental Research, 156, 443–454. https://doi.org/10.1016/j.envres.2017.03.032 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Grabosky, J., & Gucunski, N. (2019). Modelling the influence of root position and growth on pavement tensile crack failure when occurring under three thicknesses of asphaltic concrete. Urban Forestry & Urban Greening, 41, 238–247. https://doi.org/10.1016/j.ufug.2019.04.006 [Crossref] [Web of Science ®], [Google Scholar]
Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022 [Crossref] [Web of Science ®], [Google Scholar]
Jankowiak, T., & Łodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of Civil and Environmental Engineering, 6, 53–69. [Google Scholar]
Jemioło, S., & Małyszko, L. (2013). MES i modelowanie konsytutywne w analizie zniszczenia konstrukcji murowych, TOM 1. Podstawy teoretyczne. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie. [Google Scholar]
Jim, C. Y. (1993). Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environmental Conservation, 20(1), 35–49. https://doi.org/10.1017/S0376892900037206 [Crossref] [Web of Science ®], [Google Scholar]
Jim, C. Y. (2019). Resolving intractable soil constraints in urban forestry through research–practice synergy. Socio-Ecological Practice Research, 1(1), 41–53. https://doi.org/10.1007/s42532-018-00005-z [Crossref], [Google Scholar]
Koay, Y. C., Xie, Y. M., & Setunge, S. (2010). Investigation of various methods for minimising uneven displacements in pedestrian concrete pavements. Road Materials and Pavement Design, 11(2), 479–488. https://doi.org/10.1080/14680629.2010.9690285 [Taylor & Francis Online] [Web of Science ®], [Google Scholar]
Kopinga, J. (1994). Aspects of the damage to asphalt road pavings caused by tree roots. In G. Watson, & G. Watson (Eds.), The landscape below ground. Proceedings of an international workshop on tree root development in urban soils (pp. 165–178). International Society of Arboriculture. [Google Scholar]
Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4 [Crossref] [Web of Science ®], [Google Scholar]
Lucke, T., & Beecham, S. (2019). An infiltration approach to reducing pavement damage by street trees. Science of The Total Environment, 671, 94–100. https://doi.org/10.1016/j.scitotenv.2019.03.357 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Mascaró, J. J. (2012). Shaded pavements in the urban environment – a case study. Road Materials and Pavement Design, 13(3), 556–565. https://doi.org/10.1080/14680629.2012.657098 [Taylor & Francis Online] [Web of Science ®], [Google Scholar]
Mazurek, G., Buczyński, P., Mackiewicz, P., & Iwański, M. (2023). Field investigation of a deep recycled base course layer containing dedicated three component hydraulic and bituminous binder. Construction and Building Materials, 390, 131685. https://doi.org/10.1016/j.conbuildmat.2023.131685 [Crossref] [Web of Science ®], [Google Scholar]
Monrose, J., Tota-Maharaj, K., & Mwasha, A. (2021). Assessment of the physical characteristics and stormwater effluent quality of permeable pavement systems containing recycled materials. Road Materials and Pavement Design, 22(4), 779–811. https://doi.org/10.1080/14680629.2019.1643397 [Taylor & Francis Online] [Web of Science ®], [Google Scholar]
Morgenroth, J., & Buchan, G. (2009). Soil moisture and aeration beneath pervious and impervious pavements. Arboriculture & Urban Forestry, 35(3), 135–141. https://doi.org/10.48044/jauf.2009.024 [Crossref], [Google Scholar]
North, E. A., D’Amato, A. W., Russell, M. B., & Johnson, G. R. (2017). The influence of sidewalk replacement on urban street tree growth. Urban Forestry & Urban Greening, 24, 116–124. https://doi.org/10.1016/j.ufug.2017.03.029 [Crossref] [Web of Science ®], [Google Scholar]
Ong, J. C. H., Ismadi, M.-Z. P., & Wang, X. (2022). A hybrid method for pavement crack width measurement. Measurement, 197, 111260. https://doi.org/10.1016/j.measurement.2022.111260 [Crossref] [Web of Science ®], [Google Scholar]
PN-EN 1992-1-1. (2008). Eurokod 2—Projektowanie konstrukcji z betonu—Część 1-1: Reguły ogólne i reguły dla budynków. [Google Scholar]
Randrup, T. B., McPherson, E. G., & Costello, L. R. (2001). Tree root intrusion in sewer systems: Review of extent and costs. Journal of Infrastructure Systems, 7(1), 26–31. https://doi.org/10.1061/(ASCE)1076-0342(2001)7:1(26) [Crossref], [Google Scholar]
Roggema, R. (2017). Research by design: Proposition for a methodological approach. Urban Science, 1(1), 2. https://doi.org/10.3390/urbansci1010002 [Crossref], [Google Scholar]
Rosemann, J. (2011). The conditions of research by design in practice. In M. van Ouwerkerk, & J. Rosemann (Eds.), Research by design, proceedings of the international conference proceedings (5th ed., pp. 46–56). Faculty of Architecture Delft University of Technology in Co-Operation with the EAAE/AEEA. [Google Scholar]
Saaly, M., Hedayat, M. M., & Golroo, A. (2019). Performance of pervious concrete pavement under various raining conditions. Road Materials and Pavement Design, 20(7), 1653–1663. https://doi.org/10.1080/14680629.2018.1474791 [Taylor & Francis Online] [Web of Science ®], [Google Scholar]
Savi, T., Bertuzzi, S., Branca, S., Tretiach, M., & Nardini, A. (2015). Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytologist, 205(3), 1106–1116. https://doi.org/10.1111/nph.13112 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Smith, M. (2009). Abaqus/standard user’s manual, version 6.9. RI: Simulia. [Google Scholar]
Viswanathan, B., Volder, A., Watson, W. T., & Aitkenhead-Peterson, J. A. (2011). Impervious and pervious pavements increase soil CO2 concentrations and reduce root production of American sweetgum (Liquidambar styraciflua). Urban Forestry & Urban Greening, 10(2), 133–139. https://doi.org/10.1016/j.ufug.2011.01.001 [Crossref] [Web of Science ®], [Google Scholar]
Wang, W., Wang, M., Li, H., Zhao, H., Wang, K., He, C., Wang, J., Zheng, S., & Chen, J. (2019). Pavement crack image acquisition methods and crack extraction algorithms: A review. Journal of Traffic and Transportation Engineering (English Edition), 6(6), 535–556. https://doi.org/10.1016/j.jtte.2019.10.001 [Crossref], [Google Scholar]
Wojnowska-Heciak, M., Heciak, J., & Kłak, A. (2020). Flood resilient streetscape. Journal of Water and Land Development, 154–164. https://doi.org/10.24425/jwld.2019.127057 [Crossref], [Google Scholar]
Wojnowska-Heciak, M., Heciak, J., & Kłak, A. (2022a). Concrete paving slabs for comfort of movement of mobility-impaired pedestrians – a survey. International Journal of Environmental Research and Public Health, 19(6), 3183. https://doi.org/10.3390/ijerph19063183 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Wojnowska-Heciak, M., Heciak, J., & Kłak, A. (2022b). Perceptions of street trees among Polish residents with motor disabilities. Journal of Transport & Health, 27, 101490. https://doi.org/10.1016/j.jth.2022.101490 [Crossref] [Web of Science ®], [Google Scholar]
Wojnowska-Heciak, M., Suchocka, M., Błaszczyk, M., & Muszyńska, M. (2022c). Urban parks as perceived by city residents with mobility difficulties: A qualitative study with In-depth interviews. International Journal of Environmental Research and Public Health, 19(4), 2018. https://doi.org/10.3390/ijerph19042018 [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
Wong, T. W., Good, J. E. G., & Denne, M. P. (1988). Tree root damage to pavements and kerbs in the City of Manchester. Arboricultural Journal, 12(1), 17–34. https://doi.org/10.1080/03071375.1988.9756374 [Taylor & Francis Online], [Google Scholar]
Xu, Z., & Guo, Y. (2017). Simulation test of runoff on different underlying surfaces in urban area. South-to-North Water Transfers and Water Science & Technology, 10, 64–66. [Google Scholar]
Zhang, J., Meng, B., Wang, Z., Xiong, J., Tang, W., Tan, Y., & Zhang, Z. (2022). Numerical simulation on cleaning of clogged pervious concrete pavement. Journal of Cleaner Production, 341, 130878. https://doi.org/10.1016/j.jclepro.2022.130878 [Crossref] [Web of Science ®], [Google Scholar]
Zhang, K., Cheng, H. D., & Zhang, B. (2018). Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. Journal of Computing in Civil Engineering, 32(2), 04018001, https://doi.org/10.1061/(asce)cp.1943-5487.0000736. [Crossref] [Web of Science ®], [Google Scholar]
Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4), 373–382. https://doi.org/10.1016/j.ijtst.2018.12.001 [Crossref], [Google Scholar]
Zienkiewicz, O., Taylor, C., & Leroy, R. (1988a). The finite element method. Vol. 1, Basic formulation and linear problems. McGraw-Hill Publishing Company. [Google Scholar]
Zienkiewicz, O., Taylor, C., & Leroy, R. (1988b). The finite element method. Vol. 2, Solid and fluid mechanics dynamics and non-lineary. McGraw-Hill Publishing Company. [Google Scholar]