Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[125780] Artykuł:

Influence of the support conditions on dynamic response of tensegrity grids built with Quartex modules

(Wpływ warunków podparcia na dynamiczną odpowiedź kratownic tensegrity zbudowanych z modułów Quartex)
Czasopismo: ARCHIVES OF CIVIL ENGINEERING   Tom: 69, Zeszyt: 3, Strony: 629-644
ISSN:  1230-2945
Opublikowano: Wrzesień 2023
Liczba arkuszy wydawniczych:  15.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.00140.00  
Justyna Tomasik orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport5070.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

częstość drgań  kratownice tensegrity  mechanizm infinitezymalny  moduł Quartex  stan samonaprężenia 


Keywords:

infinitesimal mechanism  frequency  Quartex module  self-stress state  tensegrity grids 



Abstract:

The aim of this study is to prove that the dynamic behavior of tensegrity grids can be controlled. This possibility is very important, especially for deployable structures. The impact the support conditions of the structure on the existence of the immanent characteristics, such as self-stress states and infinitesimal mechanisms, and consequently on the dynamic control, is analyzed. Grids built with the modified Quartex modules are considered. A geometrically non-linear model is used, implemented in an original program written in the Mathematica environment. The results confirm the feasibility of controlling tensegrity structures characterized by the presence of the infinitesimal mechanisms. In the case that the mechanisms do not exist, structures are insensitive to the change of the initial prestress level. The occurrence of mechanisms can be controlled by changing the support conditions of the structure. The obtained results make tensegrity a very promising structural concept, applicable in many areas when conventional solutions are insufficient.



B   I   B   L   I   O   G   R   A   F   I   A
[1] N.D. Oliveto and M.V. Sivaselvan, “Dynamic analysis of tensegrity structures using a complementarity framework”, Computers & Structures, vol. 89, no. 23, pp. 2471–2483, 2011, doi: 10.1016/j.compstruc.2011.06.003.
[2] W. Gilewski, J. Kłosowska, and P. Obara, “The influence of self-stress on the behavior of tensegritylike real structure”, MATEC Web of Conferences, vol. 117, art. no. 00079, 2017, doi: 10.1051/matecconf/201711700079.
[3] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structures: Part 2 - Quantitative analysis”, Applied Sciences, vol. 11, no. 2, 2021, doi: 10.3390/app11020602.
[4] H. Murakami, “Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion”, International Journal of Solids and Structures, vol. 38, no. 20, pp. 3599–3613, 2001, doi: 10.1016/S0020-
7683(00)00232-8.
[5] Y. Chen and J. Feng, “Initial prestress distribution and natural vibration analysis of tensegrity structures based on group theory”, International Journal of Structural Stability and Dynamics, vol. 12, no. 2, pp. 213–231, 2012, doi: 10.1142/S0219455412500010.
[6] I.J. Oppenheim and W.O. Williams, “Vibration of an elastic tensegrity structure”, European Journal of Mechanics - A/Solids, vol. 20, no. 6, pp. 1023–1031, 2001, doi: 10.1016/S0997-7538(01)01181-0.
[7] H. Murakami and Y. Nishimura, “Static and dynamic characterization of some tensegrity modules”, Journal of Applied Mechanics, vol. 68, no. 1, pp. 19–27, 2001, doi: 10.1115/1.1331058.
[8] H. Murakami and Y. Nishimura, “Static and dynamic characterization of regular truncated icosahedral and dodecahedral tensegrity modules”, International Journal of Solids and Structures, vol. 38, no. 50, pp. 9359–9381, 2001, doi: 10.1016/S0020-7683(01)00030-0.
[9] H. Murakami and Y. Nishimura, “Initial shape finding and modal analyses of cyclic right-cylindrical tensegrity modules”, Computers & Structures, vol. 79, no. 9, pp. 891–917, 2001, doi: 10.1016/S0045-7949(00)00196-6.
[10] N. Ashwear and A. Eriksson, “Influence of temperature on the vibration properties of tensegrity structures”, International Journal of Mechanical Sciences, vol. 99, pp. 237–250, 2015, doi: 10.1016/
j.ijmecsci.2015.05.019.
[11] N. Ashwear and A. Eriksson, “Natural frequencies describe the pre-stress in tensegrity structures”, Computers & Structures, vol. 138, pp. 162–171, 2014, doi: 10.1016/j.compstruc.2014.01.020.
[12] N. Ashwear, G. Tamadapu, and A. Eriksson, “Optimization of modular tensegrity structures for high stiffness and frequency separation requirements”, International Journal of Solids and Structures, vol. 80, pp. 297–309, 2016, doi: 10.1016/j.ijsolstr.2015.11.017.
[13] N.B.H. Ali, L. Rhode-Barbarigos, A. Albi, and I. Smith, “Design optimization and dynamic analysis of a tensegrity-based footbridge", Engineering Structures, vol. 32, no. 11, pp. 3650–3659, 2010, doi: 10.1016/ j.engstruct.2010.08.009.
[14] Y. Wang and X. Xu, “Prestress design of tensegrity structures using semidefinite programming”, Advances in Civil Engineering, vol. 2019, pp. 1–9, 2019, doi: 10.1155/2019/5081463.
[15] S. Faroughi and J. Lee, “Geometrical nonlinear analysis of tensegrity based on a co-rotational method”, Advances in Structural Engineering, vol. 17, no. 1, pp. 41–51, 2014, doi: 10.1260/1369-4332.17.1.41.
[16] S. Sulaiman, P. Narayanaswamy, B. Geetha, and K.S. Satyanarayanan, “The performance of halfcuboctahedron grid tensegrity systems in roof structures”, Indian Journal of Science and Technology, vol. 9, no. 32, 2016, doi: 10.17485/ijst/2016/v9i32/98636.
[17] B.-B. Wang, Free-Standing Tension Structures: From Tensegrity Systems to Cable-Strut Systems. CRC Press, 2004.
[18] B.-B. Wang, “Cable-strut systems: part I – tensegrity”, Journal of Constructional Steel Research, vol. 45, no. 3, pp. 281–289, 1998, doi: 10.1016/S0143-974X(97)00075-8.
[19] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structures: Part 1 – Qualitative analysis”, Applied Sciences, vol. 10, no. 20, 2020, doi: 10.3390/app10207042.
[20] A. Al Sabouni-Zawadzka and A. Zawadzki, “Simulation of a deployable tensegrity column based on the finite element modeling and multibody dynamics simulations”, Archives of Civil Engineering, vol. 66, no. 4, pp. 543–560, 2020, doi: 10.24425/ace.2020.135236.
[21] A.A. Sabouni-Zawadzka and W. Gilewski, “On orthotropic properties of tensegrity structures”, Procedia Engineering, vol. 153, pp. 887–894, 2016, doi: 10.1016/j.proeng.2016.08.217.
[22] EN 1993-1-11: 2006 Eurocode 3: Design of steel structures – Part 1–11: Design of structures with tension
components.