Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[124180] Artykuł:

Voids Development in Metals: Numerical Modelling

Czasopismo: Materials   Tom: 16, Zeszyt: 14
ISSN:  1996-1944
Opublikowano: Lipiec 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wiktor Wciślik orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport50140.00140.00  
Sebastian Lipiec orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Takzaliczony do "N"Inżynieria mechaniczna50140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140



Keywords:

porous ductile material  numerical modelling  void nucleation  growth  coalescence  second phase particle  particle cracking  debonding 



Abstract: The article is a continuation of two previous review papers on the fracture mechanism of structural metals through the nucleation, growth and coalescence of voids. In the present paper, the literature on the numerical modelling of void nucleation and development has been reviewed. The scope of the work does not include porous material models and their numerical implementation. As part of the discussion on void initiation, nucleation around second phase particles and nucleation as an effect of the discontinuity of the crystal structure were discussed separately. The basic void cell models, finite element method (FEM) models of periodically distributed particles/voids and models based on the results of the observations of the actual microstructure of materials have been characterised. Basic issues related to the application of the cohesive approach in void nucleation modelling have been considered. A separate issue is the characteristics of atomistic simulations and peridynamic modelling, which have been developed in recent years. Numerical approaches to modelling the growth and coalescence of voids are described, with particular emphasis on the influence of the stress state and strain localisation. Basic conclusions from the simulation are presented, pointing to the contribution of FEM modelling to the understanding of microstructural phenomena leading to ductile fracture.