Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[123790] Artykuł:

Dynamic Stability of Tensegrity Structures—Part II: The Periodic External Load

(Stabilność dynamiczna konstrukcji tensegrity — część II: Okresowe obciążenie zewnętrzne)
Czasopismo: Materials   Tom: 16, Zeszyt: 13, Strony: 4564
ISSN:  1996-1944
Opublikowano: Czerwiec 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.00140.00  
Justyna Tomasik orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport5070.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

struktury tensegrity  wstępne siły sprężające  nieskończenie mały mechanizm  rezonans parametryczny  region niestabilności 


Keywords:

tensegrity structures  initial prestress forces  infinitesimal mechanism  parametric resonance  instability region 



Streszczenie:

Artykuł zawiera analizę parametryczną konstrukcji tensegrity poddanych okresowym obciążeniom. Analiza koncentruje się na wyznaczeniu głównego obszaru niestabilności dynamicznej. Gdy parametry obciążenia mieszczą się w tym zakresie, powstające w ten sposób amplitudy drgań rosną, stwarzając zagrożenie dla trwałości konstrukcji. W opracowaniu uwzględniono konstrukcje zbudowane z powszechnie stosowanych modułów. Zbadano wpływ naprężenia wstępnego na rozkład obszarów niestabilności. Dodatkowe naprężenie wstępne może znacznie zmniejszyć zakres obszarów niestabilności, potencjalnie zawężając je nawet o 99%. Wprowadzono parametr bezwymiarowy, aby dokładnie ocenić zmiany w zakresie obszaru niestabilności. Wykorzystano model geometrycznie nieliniowy do oceny zachowania analizowanych struktur.




Abstract:

The paper contains a parametric analysis of tensegrity structures subjected to periodic loads. The analysis focuses on determining the main region of dynamic instability. When load parameters fall within this region, the resulting vibration amplitudes increase, posing a risk to the durability of structures. The study considers structures built using commonly used modules. The influence of the initial prestress on the distribution of the instability regions is examined. Additional prestress can significantly reduce the extent of instability regions, potentially narrowing them by up to 99%. A nondimensional parameter is introduced to accurately assess changes in the extent of the instability region. A geometrically non-linear model is employed to evaluate the behavior of the analyzed structures.



B   I   B   L   I   O   G   R   A   F   I   A
1. Liapunov, A.M. The General Problem of the Stability of Motion. Ph.D. Thesis, University of Kharkov, Kharkiv, Ukraine, 1892.
2. La Salle, J., Lefschetz, S., Alverson, R.C. Stability by Liapunov’s Direct Method with Applications. Phys. Today 1962, 15, 59.
3. Cunningham, W.J. Introduction to Nonlinear Analysis, McGraw-Hill: New York, NY, USA, 1958.
4. Bolotin, V.V. Dynamic Instabilities in Mechanics of Structures. Appl. Mech. Rev. 1999, 52, R1–R9.
5. Mathieu, É. Memoir on the Vibratory Movement of an Elliptical Membrane. J. Math. Pures Appl. 1868, 13, 137–203.
6. Bolotin, V.V., Weingarten, V., Greszczuk, L.B., Trigoroff, K.N., Gallegos, K.D., Cranch, E.T. Dynamic Stability of Elastic Systems. J. Appl. Mech. 1965, 32, 718.
7. Volmir, A.C. Stability of Elastic Systems, Science: Moscow, Russia, 1963.
8. Gomuliński, A., Witkowski, M. Mechanics of Buildings, the Advanced Course, Oficyna Wyd. P.W: Warsaw, Poland, 1993.
9. Briseghella, L., Majorana, C.E., Pellegrino, C. Dynamic Stability of Elastic Structures: A Finite Element Approach. Comput. Struct. 1998, 69, 11–25.
10. Jani, N., Chakraborty, G. Parametric Resonance in Cantilever Beam with Feedback-Induced Base Excitation. J. Vib. Eng. Technol. 2021, 9, 291–301.
11. Obara, P., Gilewski, W. Dynamic Stability of Moderately Thick Beams and Frames with the Use of Harmonic Balance and Perturbation Methods. Bull. Pol. Acad. Sci. Technol. Sci. 2016, 64, 739–750.
12. Zhang, Q.-C., Cui, S.-Y., Fu, Z., Han, J.-X. Modal Interaction-Induced Parametric Resonance of Stayed Cable: A Combined Theoretical and Experimental Investigation. Math. Probl. Eng. 2021, 2021, 1–18.
13. Pomaro, B., Majorana, C.E. Parametric Resonance of Fractional Multiple-Degree-of-Freedom Damped Beam Systems. Acta Mech. 2021, 232, 4897–4918.
14. Tan, T.H., Lee, H.P., Leng, G.S.B. Parametric Instability of Spinning Pretwisted Beams Subjected to Sinusoidal Compressive Axial Loads. Comput. Struct. 1998, 66, 745–764.
15. Yang, X.-D., Tang, Y.-Q., Chen, L.-Q., Lim, C.W. Dynamic Stability of Axially Accelerating Timoshenko Beam: Averaging Method. Eur. J. Mech. A Solids 2010, 29, 81–90.
16. Shen, Y.-J., Wei, P., Yang, S.-P. Primary Resonance of Fractional-Order van Der Pol Oscillator. Nonlinear Dyn. 2014, 77, 1629–1642.
17. Song, Z., Chen, Z., Li, W., Chai, Y. Dynamic Stability Analysis of Beams with Shear Deformation and Rotary Inertia Subjected to Periodic Axial Forces by Using Discrete Singular Convolution Method. J. Eng. Mech. 2016, 142, 04015099.
18. Ghomeshi Bozorg, M., Keshmiri, M. Stability Analysis of Nonlinear Time Varying System of Beam-Moving Mass Considering Friction Interaction. Indian J. Sci. Technol. 2013, 6, 1–10.
19. Zyczkowski, M. ˙ Strength of Structural Elements. Part 3: Stability of Bars and Bar Structures, Polish Scientific Publishers: Warsaw, Poland, 1991.
20. Zahedi, M., Khatami, I., Zahedi, A. Parametric Resonance Domain of a Parametric Excited Screen Machine. Sci. Iran. 2020, 28, 1236–1244.
21. Liu, W., Li, Y. Stability Analysis for Parametric Resonances of Frame Structures Using Dynamic Axis-Force Transfer Coefficient. Structures 2021, 34, 3611–3621.
22. Mascolo, I. Recent Developments in the Dynamic Stability of Elastic Structures. Front. Appl. Math. Stat. 2019, 5, 51.
23. Obara, P., Tomasik, J. Dynamic Stability of Tensegrity Structures—Part I: The Time-Independent External Load. Materials 2023, 16, 580.
24. Ma, S., Chen, M., Skelton, R.E. Dynamics and Control of Clustered Tensegrity Systems. Eng. Struct. 2022, 264, 114391.
25. Shuo, M., Chen, M., Skelton, R. TsgFEM: Tensegrity Finite Element Method. J. Open Source Softw. 2022, 7, 3390.
26. Shuo, M., Chen, M., Yongcan, D., Yuan, X., Skelton, R. The Pulley-Driven Clustered Tensegrity Structure Statics and Dynamics. 2023. Available online: http://dx.doi.org/10.2139/ssrn.4384126 (accessed on 26 May 2023).
27. Shekastehband, B., Ayoubi, M. Nonlinear Dynamic Instability Behavior of Tensegrity Grids Subjected to Impulsive Loads. Thin-Walled Struct. 2019, 136, 1–15.
28. Obara, P., Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 2—Quantitative Analysis. Appl. Sci. 2021, 11, 602.
29. Murakami, H. Static and Dynamic Analyses of Tensegrity Structures. Part 1. Nonlinear Equations of Motion. Int. J. Solids Struct. 2001, 20, 3599–3613.
30. Atai, A.A., Steigmann, D.J. On the Nonlinear Mechanics of Discrete Networks. Arch. Appl. Mech. 1997, 67, 303–319.
31. EN 1993-1-11: 2006, Eurocode 3: Design of Steel Structures—Part 1-11: Design of Structures with Tension Components. European Union: Strasbourg, France, 2006.
32. EN 1993-1-1: 2005, Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings. European Union: Strasbourg, France, 2005.