Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[122700] Artykuł:

Genetic Algorithm as a Tool for the Determination of the Self-Stress States of Tensegrity Domes

(Algorytm genetyczny jako narzędzie do określania stanów samonaprężenia kopuł tensegrity)
Czasopismo: Applied Sciences   Tom: 13, Zeszyt: 9, Strony: 5267
ISSN:  2076-3417
Opublikowano: Kwiecień 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Justyna Tomasik orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport3333.33.00  
Maryna Solovei orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport3333.33.00  
Paulina Obara orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3333.33100.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

stan samonaprężenia  algorytm genetyczny  kopuły tensegrity 


Keywords:

self-stress state  genetic algorithm  tensegrity domes 



Streszczenie:

Celem pracy jest znalezienie odpowiedniego stanu samonaprężenia struktur tensegrity. Pierwsze podejście zapewnia dokładne rozwiązania, ale jest odpowiednie dla prostych struktur. W drugim podejściu proponowanym w niniejszych badaniach zakłada się, że siły stanu samonaprężenia są zbiorem losowo wybranych wartości, które następnie są optymalizowane przez algorytm genetyczny. Ta procedura jest przeznaczona dla bardziej rozbudowanych struktur, dla których analiza spektralna identyfikuje wiele stanów samonaprężenia, które należy dodać do siebie poprzez superpozycję. Stosowane są dwa podejścia, tj. analiza spektralna macierzy kompatybilności i algorytm genetyczny. Procedury rozwiązania przedstawiono na przykładzie prostej dwuwymiarowej kratownicy. Następnie rozważane są trzy różne kopuły tensegrity, tj. Geigera Levy'ego i Kiewitta. Znacząca różnica między tymi kopułkami tkwi w układzie kabli. Otrzymane wyniki porównano z udokumentowanymi w literaturze. Z rozważań wynika, że ​​występujące w literaturze stany samonaprężenia nie zawsze są trafne (siły nie są samorównoważne). Przedstawione wyniki potwierdzają skuteczność algorytmu genetycznego znajdowania samorównoważnych systemów sił normalnych istniejących struktur. Proponowana metoda jest stosunkowo prosta i zapewnia wystarczająco dokładne wyniki.




Abstract:

The aim of the paper is to find the appropriate self-stress state of the tensegrity structures. The first approach provides exact solutions but is suitable for simple structures. In the second approach proposed in this research, it is assumed that the forces of the self-stressed state are a set of randomly selected values, which are then optimized by a genetic algorithm. This procedure is intended for more elaborate structures, for which the spectral analysis identifies many self-stress states that need to be superimposed. Two approaches are used, i.e., the spectral analysis of the compatibility matrix and the genetic algorithm. The solution procedures are presented on the example of a simple two-dimensional truss. Next, three different tensegrity domes are considered, i.e., Geiger, Levy and Kiewitt. The significant difference between these domes lies in the cable system. The obtained results are compared with those documented in the literature. It follows from the considerations that the self-stressed states found in the literature are not always accurate (forces do not balance themselves). The presented results confirm the effectiveness of the genetic algorithm for finding self-balanced forces of the existing structures. The method is relatively simple and provides sufficiently accurate results.



B   I   B   L   I   O   G   R   A   F   I   A
Fuller, R.B. Tensile-Integrity Structures. U.S. Patent No. 3.063.521, 13 November 1962.
Emmerich, D.G. Construction de Reseaux Autotendants. French Patent No. 1.377.290, 6 November 1964.
Snelson, K. Continuous Tension, Discontinuous Compression Structures. U.S. Patent No. 3,169,611, 16 February 1965.
Pugh, A. An Introduction to Tensegrity, University of California Press: Berkeley, CA, USA, 1976.
Motro, R. Tensegrity systems: The state of the art. Int. J. Space Struct. 1992, 7, 75–83.
Obara, P., Kłosowska, J., Gilewski, W. Truth and myths about 2D tensegrity trusses. Appl. Sci. 2019, 9, 179.
Obara, P., Tomasik, J. Parametric analysis of tensegrity plate-like structures: Part 1—Qualitative analysis. Appl. Sci. 2020, 10, 7042.
Calladine, C.R., Pellegrino, S. First-order infinitesimal mechanisms. Int. J. Solids Struct. 1991, 27, 505–515.
Obara, P., Tomasik, J. Dynamic stability of tensegrity structures—Part I: The time independent external load. Materials 2023, 16, 580.
Gilewski, W., Klosowska, J., Obara, P. Self-stress control of real civil engineering tensegrity structure. AIP Conf. Proc. 2018, 1922, 150004.
Sultan, C. Tensegrity: 60 years of art science and engineering. Adv. Appl. Mech. 2009, 43, 69–145.
Levy, M.P. Hypar-tensegrity dome. In Proceedings of the International Symposium on Sports Architecture, Beijing, China, 17–21 April 1989, pp. 157–162.
Fu, F. Structural behavior and design methods of tensegrity domes. J. Constr. Steel Res. 2005, 61, 23–35.
Guo, J., Jiang, J. An algorithm for calculating the feasible prestress of cable-struts structure. Eng. Struct. 2016, 118, 228–239.
Ma, S., Chen, M., Yuan, X., Skelton, R.E. Design and analysis of deployable clustered tensegrity cable domes. In Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures Inspiring the Next Generation, Guilford, UK, 23–27 August 2021.
Melaragno, Tensegrities for skeletal domes: The Georgia Dome, a case study. Period. Polytech. Archit. 1993, 37, 73–79.
Zabojszcza, P., Radoń, U., Szaniec, W. Probabilistic Approach to Limit States of a Steel Dome. Materials 2021, 14, 5528.
Zabojszcza, P., Radoń, U. The Impact of Node Location Imperfections on the Reliability of Single-Layer Steel Domes. Appl. Sci. 2019, 9, 2742.
Levy, M.P. The Georgia Dome and Beyond: Achieving Lightweight-Longspan Structures. In Proceedings of the IASS-ASCE International Symposium, Atlanta, GA, USA, 24–28 April 1994, pp. 560–562.
Geiger, D.H., Stefaniuk, A., Chen, D. The design and construction of two cable domes for the Korean Olympics. In Proceedings of the IASS Symposium on Shells, Membranes and Space Frames, Osaka, Japan, 15–19 September 1986, pp. 265–272.
Geiger, D.H. Roof Structure. U.S. Patent 4,736,553, 12 April 1988.
Terry, W.R. Georgia Dome cable roof construction techniques. In Spatial, Lattice i Tension Structures: Proceeding of the IASS-ASCE International Symposium, Leonard, J.W., Abel, J.F., Penalba, C.U., Eds., ASCE: New York, NY, USA, 1994, pp. 563–572.
Wang, B.B. Cable-Strut system: Part 1, tensegrity. J. Construct. Steel Res. 1998, 45, 281–289.
Rębielak, J. Structural system of cable dome shaped by means of simple form of spatial hoops. In Lightweight Structures in Civil Engineering, Obrebski, J.B., Ed., Micro-Publisher: Warsaw, Poland, 2000, pp. 114–115.
Kawaguchi, M., Tatemichi, I., Chen, P.S. Optimum shapes of a cable dome structure. Eng. Struct. 1999, 21, 719–725.
Jo, N.-C., Choi, S.-Y., Han, S.-E. Shape optimization of the Cable Dome System. In Proceedings of the Computational Structural Engineering Institute Conference, Computational Structural Engineering Institute of Korea: Republic of Korea, 2004, pp. 151–160. Available online: http://www.koreascience.kr/article/CFKO200411922703571.pub?&lang=en&orgId=coseik (accessed on 28 February 2023).
Yuan, X., Chen, L., Dong, S. Prestress design of cable domes with new forms. Int. J. Solids Struct. 2007, 44, 2773–2782.
Kiewitt, G. The new look of lamella roofs. In Architectural Engineering: New Structures, Fischer, R.E., Ed., Mc-Graw-Hill/Architectural Record: New York, NY, USA, 1964, pp. 20–25.
Pellegrino, S. A class of tensegrity domes. Int. J. Space Struct. 1992, 7, 127–143.
Tibert, A.G., Pellegrino, S. Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 2003, 18, 209–223.
Juan, S.H., Tur, J.M.M. Tensegrity frameworks: Static analysis review. Mech. Mach. Theory 2008, 43, 859–881.
Veenendaal, D., Block, P. An overview and comparison of structural form finding methods for general networks. Int. J. Solids Struct. 2012, 49, 3741–7683.
Harichandran, A., Sreevalli, I.Y. Form-finding of tensegrity structures based on force density method. Indian J. Sci. Technol. 2016, 9, 1–6.
Zhang, J.Y., Ohsaki, M. Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 2006, 43, 5658–5673.
Bel Hadj Ali, N., Rhode-Barbarigos, L., Smith, I.F.C. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int. J. Solids Struct. 2011, 48, 637–647.
Li, Q., Skelton, R.E., Yan, J. Energy optimization of deployable tensegrity structure. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011, p. 12383827.
Arsenault, M., Gosselin, C.M. Kinematic, static, and dynamic analysis of a planar one-degree-of-freedom tensegrity mechanism. J. Mech. Des. 2005, 127, 1152–1160.
Ma, Q., Ohsaki, M., Chen, Z., Yan, X. Step-by-step unbalanced force iteration method for cable-strut structure with irregular shape. Eng. Struct. 2018, 177, 331–344.
Tran, H.C., Lee, J. Form-finding of tensegrity structures using double singular value decomposition. Eng. Comput. 2013, 29, 71–86.
Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence, MIT Press: Michigan, MA, USA, 1975.
Yahamoto, M., Gan, B.S., Fujita, K., Kurokawa, J. A Genetic algorithm based form-finding for tensegrity structure. Proceedia Eng. 2011, 14, 2949–2956.
Koohestani, K. Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 2012, 49, 739–747.
Lee, S., Lee, J., Kang, J. A Genetic Algorithm based form-finding of tensegrity structures with multiple self-stress states. J. Asian Archit. Build. Eng. 2017, 16, 155–162.
Xu, X., Luo, Y. Form-finding of non-regular tensegrities using a genetic algorithm. Mech. Res. Commun. 2010, 37, 85–91.
Ma, S., Yuan, X.-F., Xie, S.-D. A new Genetic Algorithm-based topology optimization method of tensegrity tori. KSCE J. Civil. Eng. 2019, 23, 2136–2147.
Uzun, F. Form-finding of free-form tensegrity structures by genetic algorithm-based total potential energy optimization. Adv. Civ. Eng. 2016, 20, 784–796.
Jiang, Z., Liu, X., Shi, K., Lin, Q., Zhang, Z. Catenary equation-based approach for force finding of cable domes. Int. J. Steel Struct. 2019, 19, 283–292.
Pollini, N. Gradient-based prestress and size optimization for the design of cable domes. Int. J. Solids Struct. 2021, 222, 111028.
Lee, S., Woo, B.H., Lee, J. Self-stress design of tensegrity grid structures using genetic algorithm. Int. J. Mech. Sci. 2014, 79, 38–46.
Lee, S., Lee, J. Optimum self-stress design of cable-strut structures using frequency constraints. Int. J. Mech. Sci. 2014, 89, 462–469.
PyGad—Python Genetic Algorithm! Available online: https://pygad.readthedocs.io/en/latest/index.html (accessed on 28 March 2023).
Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann: Oxford, UK, 2013, ISBN 978-1-85617-633-0.
Lee, S., Lee, J. Advanced automatic grouping for form-finding of tensegrity structures. Struct. Multidiscipl. Optim. 2017, 55, 959–968.
Chen, Y., Feng, J. Generalized eigenvalue analysis of symmetric prestressed structures using group theory. J. Comput. Civ. Eng. 2012, 26, 488–497.