Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[122670] Artykuł:

The application of the immanent tensegrity properties to control the behavior of double-layered grids

(Zastosowanie immanentnych właściwości tensegrity do kontroli zachowania dwuwarstwowych kratownic)
Czasopismo: Archives of Civil Engineering   Tom: 69, Zeszyt: 1, Strony: 131-145
ISSN:  1230-2945
Opublikowano: Kwiecień 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.00140.00  
Justyna Tomasik orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport5070.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

dwuwarstwowe kratownice tensegrity  mechanizm infinitezymalny  stan samonaprężenia  analiza jakościowa  analiza ilościowa 


Keywords:

double-layered tensegrity grids  infinitesimal mechanism  self-stress state  qualitative analysis  quantitative analysis 



Streszczenie:

W artykuł rozpatrzono statyczne zachowanie dwuwarstwowych siatek tensegrity. Ze względu na specyficzne cechy, takie jak stany samonaprężenia i mechanizmy infinitezymalne, tensegrity mogą być stosowane jako konstrukcje tymczasowe. Dla takich struktur bardzo ważna jest możliwość kontroli zachowania. Głównym celem pracy jest wykazanie, że sterowanie zachowaniem struktur tensegrity za pomocą mechanizmów jest możliwe. Stwierdzono, że sztywność takich konstrukcji zależy nie tylko od geometrii i właściwości materiałowych, ale także od poziomu stanusamonaprężenia i obciążenia zewnętrznego. W przypadku braku mechanizmów, konstrukcje tensegrity są niewrażliwe na zmianę poziomu naprężenia wstępnego. Istnieje możliwość sterowania występowaniem mechanizmów poprzez zmianę warunków podparcia konstrukcji. Rozważane są dwuwarstwowe kratownice tensegrity zbudowane ze zmodyfikowanych modułów Simplex. Przeprowadzana analiza jest dwuetapowa. Najpierw badana jest obecność charakterystycznych cech tensegrity, a następnie na tej podstawie klasyfikuje się konstrukcje do jednej z dwóch klas. Następnie analizowany jest wpływ poziomu stanu samonaprężenia na zachowanie się konstrukcji pod działaniem obciążenia statycznym. Aby ocenić to zachowanie, zastosowano model geometrycznie nieliniowy.




Abstract:

The paper focuses on the static behavior of double-layered tensegrity grids. Due to the specific characteristics, like the self-stress states and infinitesimal mechanisms, tensegrities can be used as deployable structures. For such structures, the possibility of the control of the behavior is very important. The main purpose of the work is to prove that the control of tensegrity structures with mechanisms is possible. The stiffness of such structures is found to depend not only on the geometry and material properties, but also on the initial prestress level and external load. In the case, when mechanisms do not exist, structures are insensitive to the initial prestress. It is possible to control the occurrence of mechanisms by changing the support conditions of the structure. Grids built with modified Simplex modules are considered. Two-stage analysis is performed. Firstly, the presence of the characteristic tensegrity features is examined and then, on that basis, the structures are classified into one of two classes. Next, the influence of the level of initial prestress on the behavior of structures under static load is analyzed. To evaluate this behavior, a geometrically non-linear model is used.



B   I   B   L   I   O   G   R   A   F   I   A
[1] L. Rhode-Barbarigos, N. Bel Hadj Ali, R. Motro, I. F. C. Smith, "Tensegrity modules for pedestrian bridges", in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia, 2009.
[2] L. Rhode-Barbarigos, N. Bel Hadj Ali, R. Motro, I. F. C. Smith, "Designing tensegrity modules for pedestrian bridges", Engineering Structures, Apr. 2010, vol. 32, no. 4, pp. 1158–1167, DOI: 10.1016/j.engstruct.2009.12.042.
[3] L. Rhode-Barbarigos, N. Bel Hadj Ali, R. Motro, I. F. C. Smith, "Design Aspects of a Deployable Tensegrity-Hollow-rope Footbridge", International Journal of Space Structures, Jun. 2012, vol. 27, no. 2–3, pp. 81–95, DOI: 10.1260/0266-3511.27.2-3.81.
[4] F. Jamin, J. Averseng, J. Quirant, S. Vigan-Amouri, "La mer accessible à tous : Les systèmes de tenségrité déployables au service de l’autonomie", 2016.
[5] J. Averseng, F. Jamin, J. Quirant, "Système de tenségrité déployable et modulaire pour le développement de l’accessibilité", 2017.
[6] A. Micheletti, "Modular Tensegrity Structures: The ”Tor Vergata” Footbridge", 2012, pp. 375–384.
[7] W. Gilewski, A. Al Sabouni-Zawadzka, "On possible applications of smart structures controlled by self-stress", Archives of Civil and Mechanical Engineering, Sep. 2014, vol. 15, DOI: 10.1016/j.acme.2014.08.006.
[8] K.-J. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.
[9] W. Gilewski, A. Kasprzak, "Introduction to mechanics of tensegrity modules", Theoretical Fundamentals of Building Engineering, Vol. I. Mechanics of Materials and Structures, Jan. 2012, pp. 83–94.
[10] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals. Oxford: Butterworth-Heinemann, 2013 [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9781856176330000198.
[11] P. Obara, J. Tomasik, "Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis", Applied Sciences, 2020, vol. 10, no. 20, DOI: 10.1016/10.3390/app10207042.
[12] P. Obara, J. Tomasik, "Parametric Analysis of Tensegrity Plate-Like Structures: Part 2—Quantitative Analysis", Applied Sciences, 2021, vol. 11, no. 2, DOI: 10.3390/app11020602.
[13] P. Obara, J. Tomasik, "Active Control of Stiffness of Tensegrity Plate-like Structures Built with Simplex Modules", Materials, 2021, vol. 14, no. 24, DOI: 10.3390/ma14247888.
[14] C. R. Calladine, "Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames", International Journal of Solids and Structures, Jan. 1978, vol. 14, no. 2, pp. 161–172, DOI: 10.1016/0020-7683(78)90052-5.
[15] C. R. Calladine, "Modal stiffnesses of a pretensioned cable net", International Journal of Solids and Structures, Jan. 1982, vol. 18, no. 10, pp. 829–846
DOI: 10.1016/0020-7683(82)90068-3.
[16] S. Pellegrino, C. R. Calladine, "Matrix analysis of statically and kinematically indeterminate frameworks", International Journal of Solids and Structures, Jan. 1986, vol. 22, no. 4, pp. 409–428
DOI: 10.1016/0020-7683(86)90014-4.
[17] S. Pellegrino, "Analysis of prestressed mechanisms", International Journal of Solids and Structures, Jan. 1990, vol. 26, no. 12, pp. 1329–1350, DOI: 10.1016/0020-7683(90)90082-7.
[18] C. R. Calladine, S. Pellegrino, "First-order infinitesimal mechanisms", International Journal of Solids and Structures, Jan. 1991, vol. 27, no. 4, pp. 505–515
DOI: 10.1016/0020-7683(91)90137-5.
[19] W. Gilewski, J. Kłosowska, P. Obara, "Form finding of tensegrity structures via Singular Value Decomposition of compatibility matrix", 2016, pp. 191–195.
[20] P. Obara, J. Kłosowska, W. Gilewski, "Truth and Myths about 2D Tensegrity Trusses", Applied Sciences, Jan. 2019, vol. 9, no. 1, p. 179, DOI: 10.3390/app9010179.
[21] S. Pellegrino, "Structural computations with the singular value decomposition of the equilibrium matrix", International Journal of Solids and Structures, Jan. 1993, vol. 30, no. 21, pp. 3025–3035, DOI: 10.1016/0020-7683(93)90210-X.
[22] H. Rahami, A. Kaveh, M. Ardalan Asl, S. R. Mirghaderi, "Analysis of near-regular structures with node irregularity using SVD of equilibrium matrix", International Journal of Civil Engineering, Dec. 2013, vol. 11, no. 4, pp. 226–241.
[23] W. Gilewski, J. Kłosowska, P. Obara, "Verification of Tensegrity Properties of Kono Structure and Blur Building", XXV Polish – Russian – Slovak Seminar “Theoretical Foundation of Civil Engineering", Jan. 2016, vol. 153, pp. 173–179, DOI: 10.1016/j.proeng.2016.08.099.
[24] W. Gilewski, J. Kłosowska, P. Obara, "The influence of self-stress on the behavior of tensegrity-like real structure", MATEC Web of Conferences, 2017, vol. 117, p. 00079, DOI: 10.1051/matecconf/201711700079.
[25] W. Gilewski, J. Kłosowska, P. Obara, "Parametric analysis of some tensegrity structures", MATEC Web Conferences, 2019, vol. 262, DOI: 10.1051/matecconf/201926210003.
[26] P. Obara, "Analysis of orthotropic tensegrity plate strips using a continuum two-dimensional model", MATEC Web of Conferences, Jan. 2019, vol. 262, p. 10010, DOI: 10.1051/matecconf/201926210010.
[27] P. Obara, "Application of linear six-parameter shell theory to the analysis of orthotropic tensegrity plate-like structures", Journal of Theoretical and Applied Mechanics, Jan. 2019, vol. 57, pp. 167–178, DOI: 10.15632/jtam-pl.57.1.167.
[28] P. Obara, Dynamic and dynamic stability of tensegrity structures. Kielce: Wydawnictwo Politechniki Świętokrzyskiej, 2019.
[29] J. Tomasik, P. Obara, "Impact of the self-stress state on the static properties of double-layered tensegrity grids" in Modern Trends in Research on Steel, Aluminium and Composite Structures: Proceedings of the XIV International Conference On Metal Structures (ICMS2021), Poznań, Poland, 16-18 Jun. 2021, 1st ed., Routledge, 2021, pp. 127-133, DOI: 10.1201/9781003132134.
[30] A. Al Sabouni-Zawadzka, A. Zawadzki, "Simulation of a Deployable Tensegrity Column Based on the Finite Element Modeling and Multibody Dynamics Simulations", Archives of Civil Engineering, Dec. 2020, vol. 66, no. 4, pp. 543–560
DOI: 10.24425/ace.2020.135236.