Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[121310] Artykuł:

Qualitative and quantitative analysis of tensegrity domes

(Analiza jakościowa oraz ilościowa kopuł tensegrity)
Czasopismo: BULLETIN OF THE POLISH ACADEMY OF SCIENCES   Tom: 71, Zeszyt: 1, Strony: 1-8
ISSN:  2300-1917
Opublikowano: Luty 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3333.33100.00  
Maryna Solovei orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport3333.33.00  
Justyna Tomasik orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport3333.33.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

tensegrity dome  self-stress state  infinitesimal mechanism  geometrical non-linear analysis. 



Abstract:

The paper concerns steel domes with regard to the special structures named tensegrity. Tensegrities are characterized by the occurrence of self-stress states. Some of them are also characterized by the presence of infinitesimal mechanisms. The aim of this paper is to prove that only tensegrity domes with mechanisms are sensitive to the change of the level of initial prestress. Two tensegrity domes are considered. In addition, a standard single-layer dome is taken into account for comparison. The analysis is carried out in two stages. Firstly, the presence of the characteristic tensegrity features is examined (qualitative analysis). Next, the behavior under static external loads is studied (quantitative analysis). In particular, the influence of the initial prestress level on displacements, effort, and stiffness of the structure is analyzed. To evaluate this behavior, a geometrically non-linear model is used. The model is implemented in an original program written in the Mathematica environment. The analysis demonstrates that for a dome with mechanisms, the adjustment of pre-stressing forces influences the static properties. It has been found that the stiffness depends not only on the geometry and properties of the material but also on the initial prestress level and external load. In the case of the non-existence of mechanisms, structures are insensitive to the initial prestress level.



B   I   B   L   I   O   G   R   A   F   I   A
[1] A. Zingoni and N. Enoma, “On strength and stability of elliptic toroidal domes,” Eng. Struct., vol. 207, p. 110241, 2020, doi: 10.1016/j.engstruct.2020.110241.
[2] S. Kato, J.M. Kim, and M.C. Cheong, “A new proportioning method for member sections of single-layer reticulated domes subjected to uniform and non-uniform loads,” Eng. Struct., vol. 25, no. 10, pp. 1265–1278, 2003, doi: 10.1016/S0141-0296 (03)00077-4.
[3] X. Zhao, S. Yan, and Y. Chen, “Comparison of progressive collapse resistance of single-layer latticed domes under different loadings,” J. Constr. Steel Res., vol. 129, pp. 204–214, 2017, doi: 10.1016/j.jcsr.2016.11.012.
[4] L. Tian, J. He, C. Zhang, and R. Bai, “Progressive collapse resistance of single-layer latticed domes subjected to non-uniform snow loads,” J. Constr. Steel Res., vol. 176, p. 106433, 2021, doi: 10.1016/j.jcsr.2020.106433.
[5] X. Yan, Y. Yang, Z. Chen, and Q. Ma, “Mechanical properties of a hybrid cable dome under non-uniform snow distribution,” J. Constr. Steel Res., vol. 153, pp. 519–532, 2019, doi: 10.1016/j.jcsr.2018.10.022.
[6] U. Radon, P. Zabójszcza, and D. Opatowicz, “Assesment of the effect of wind load on the load capacity of a single-layer bar dome,” Buildings, vol. 10, no. 179, pp. 1–27, 2020, doi: 10.3390/buildings10100179.
[7] H. Karimi and I.M. Kani, “Finding the worst imperfection pattern in shallow lattice domes using genetic algorithms,” J. Building Eng., vol. 23, pp. 107–113, 2019, doi: 10.1016/j.jobe.2019.01.018.
[8] J. Błachut, “Impact of local and global shape imperfections on buckling of externally pressurised domes,” nt. J. Pressure Vessels Pip., vol. 188, p. 104178, 2020, doi: 10.1016/j.ijpvp.2020.104178.
[9] P. Zabojszcza and U. Radon, “The impact of node location imperfections on the reliability of single-layer steel domes,” Appl. Sci., vol. 9, no. 13, p. 2742, 2019, doi: 10.3390/app9132742.
[10] M. Lu and J. Ye, “Guided genetic algorithm for dome optimization against instability with discrete variables,” J. Constr. Steel Res., vol. 139, pp. 149–156, 2017, doi: 10.1016/j.jcsr.2017.09.019.
[11] M. Lu and J. Ye, “Design optimization of domes against instability considering joint stiffness,” J. Constr. Steel Res., vol. 169, p. 105757, 2020, doi: 10.1016/j.jcsr.2019.105757.
[12] G.P. Cimellaro and M. Domaneschi, “Stability analysis of different types of steel scaffolds,” Eng. Struct., vol. 152, pp. 535–548, 2017, doi: 10.1016/j.engstruct.2017.07.091.
[13] Y. Guan, L.N. Virgin, and D. Helm, “Structural behavior of shallow geodesic lattice domes,” Int. J. Solids Struct., vol. 155, pp. 225–239, 2018, doi: 10.1016/j.ijsolstr.2018.07.02.
[14] P. Zabojszcza, U. Radon, and W. Szaniec, “Probabilistic approach to limit states of a steel dome,” Materials, vol. 14, no. 19, p. 5528, 2021, doi: 10.3390/ma14195528.
[15] A. Dudzik and B. Potrzeszcz-Sut, “Hybrid approach to the first order reliability method in the reliability analysis of a spatial structure,” Appl. Sci., vol. 11, no. 2, p. 648, 2021, doi: 10.3390/app11020648.
[16] D.H. Geiger, “The design and construction of two cable domes for the Korea Olympics. Shells, Membranes and Space Frame,” in Proc. IASS Symposium, Osaka, 1986, pp. 265–272.
[17] B.B. Wang, “Cable-Strut system: part 1, tensegrity,” J. Construct. Steel Res., vol. 45, no. 3, pp. 281–289, 1998.
[18] J. R˛ebielak, “Structural system of cable dome shaped by means of simple form of spatial hoops,” in Proc. Lightweight structures in Civil Engineering, 2000, pp. 114–115.
[19] M. Kawaguchi, I. Tatemichi, and P.S. Chen, “Optimum shapes of a cable dome structure,” Eng. Struct., vol. 21, no. 8, pp. 719– 725, 1999, doi: 10.1016/S0141-0296(98)00026-1.
[20] M. Levy and G. Castro, “Analysis of the Georgia dome Cable Roof,” in Proc. of the Eight Conference of Computing in Civil Eng. And Geogr. Inf. Systems Symposium, ASCE, 1992, pp. 7–9.
[21] M. Levy, “Floating fabric over Georgia dome,” Civil Eng. ASCE, vol. 61, no. 11, pp. 34–37, 1991.
[22] J. Lee, H.C. Tran, and K. Lee, “Advanced form-finding for cable dome structures,” in Proc. of IASS Symposium, 2009.
[23] Y. Chen, Q. Sun, and J. Feng, “Group-theoretical form-finding of cable-strut structures based on irreducible representations for rigid-body translations,” Int. J. Mech. Sci., vol. 144, pp. 205–215, 2018, doi: 10.1016/j.ijmecsci.2018.05.057.
[24] Y. Xue, Y. Luo, and X. Xu, “Form-finding of cable-strut structures with given cable forces and strut lengths,” Mech. Res. Commun., vol. 106, p. 103530, 2020, doi: 10.1016/j.mechrescom.2020.103530.
[25] X. Yuan, L. Chen, and S. Dong, “Prestress design of cable domes with new forms,” Int. J. Solids Struct., vol. 44, pp. 2773–2782, 2007, doi: 10.1016/j.ijsolstr.2006.08.026.
[26] S. Krishnan, “Structural design and behavior of prestressed cable domes,” Eng. Struct., vol. 209, p. 110294, 2020, doi: 10.1016/j.engstruct.2020.110294.
[27] X. Shen, Q. Zhang, D.S.H. Lee, J. Cai, and J. Feng, “Static behavior of a retractable suspen-dome structure,” Symmetry, vol. 13, no. 7, p. 1105, 2021, doi: 10.3390/sym13071105.
[28] G. Sun and S. Xiao, “Test and numerical investigation mechanical behavior of cable dome,” Int. J. of Steel Struct., vol. 21, no. 4, pp. 1502-1514, 2021, doi: 10.1007/s13296-021-00517-7.
[29] P. Obara, Dynamic and dynamic stability of tensegrity structures, Kielce: Wydawnictwo Politechniki Swi˛etokrzyskiej, 2019. (in Polish)
[30] J. Kłosowska, P. Obara, and W. Gilewski, “Self-stress control of real civil engineering tensegrity structures,” AIP Conference Proceedings 1922, 2018, p. 150004, doi: 10.1063/1.5019157.
[31] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structure: Part 2 – Quantitative Analysis,” App. Sci., vol. 11, no. 2, p. 602, 2021, doi: 10.3390/app11020602.
[32] P. Obara, J. Kłosowska, and W. Gilewski, “Truth and myths about 2D tensegrity trusses,” App. Sci., vol. 9, p. 179, 2019, doi: 10.3390/app9010179.
[33] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Vol. 1. The Basis, London: Elsevier Butterworth-Heinemann, 2000.
[34] W. Gilewski et al., “Application of singular value decomposition for qualitative analysis of truss and tensegrity structures,” Acta Sci. Pol. Hortorum Cultus, vol. 11, no. 3, p. 14, 2015.
[35] A.G. Tibert and S. Pellegrino, “Review on Form-Finding methods for tensegrity Structures,” Int. J. Space Struct., vol. 18, no. 4, pp. 209–223, 2003, doi: 10.1260/026635103322987940.
[36] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structure: Part 1 – Qualitative Analysis,” App. Sci., vol. 10, no. 20, pp. 7042, 2020, doi: 10.3390/app10207042.
[37] P. Obara and J. Tomasik, “Active control of stiffness of tensegrity plate-like structures built with simplex modules,” Materials, vol. 14, no. 24, p. 7888, 2021, doi: 10.3390/ma14247888.
[38] Eurocode 3: Design of steel structures – Part 1–11: Design of structures with tension components, EN 1993-1-11: 2006.