Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[121210] Artykuł:

The Influence of Dome Geometry on the Results of Modal and Buckling Analysis.

(Wpływ geometrii kopuły na wyniki analizy modalnej i wyboczeniowej)
Czasopismo: Applied Sciences - Basel   Tom: 13, Zeszyt: 2729
ISSN:  2076-3417
Opublikowano: Luty 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3350.0050.00  
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3350.0050.00  
Milan Sokol Niespoza "N" jednostki33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

modal analysis  finite element method  Schwedler dome  geodesic dome  linear and geometrical nonlinear buckling analysis 



Abstract:

The main purpose of this paper is to compare the results of modal analysis for two types of domes. The first one is a low-rise Schwedler dome. The second one is a high-rise geodesic dome. The low-rise Schwedler dome is subjected to large displacement gradients and should be designed according to geometrical nonlinear analysis. In the case of high-rise geodesic dome, linear analysis is sufficient. In the modal analysis, the mass of the bars of the supporting structures was modeled as evenly distributed, while the mass of the covering and roof equipment was concentrated in the nodes. Classic calculations have been enriched with modal analysis taking into account normal forces. Normal forces affect the vibration frequency of the structure. Commonly used modal analysis does not take into account the influence of normal forces. In order to approximate the actual working conditions of the structure, calculations performed in Autodesk Robot Structure Professional 2022 can be performed in accordance with the modal analysis, taking into account the applied normal forces in the modal analysis. Additionally, stability loss was verified using linear or geometrical nonlinear buckling analysis. The exigence of including normal forces in modal analysis for low-rise domes is the novelty and main message of the work.



B   I   B   L   I   O   G   R   A   F   I   A
1. Marcinowski, J. Threats to buildings resulting from resonant vibrations. Constr. Rev. 2012, 5, 10. (In Polish).
2. Wilde, K. Grębowski, K. Rucka, M. Modeling of some dynamic interactions on the construction of stands of sports facilities. Eng. Constr. 2013, 11, 612–615. (In Polish).
3. Wilde, K. Rucka, M. Grębowski, K. Emergency condition of the stand of the stadium in Zielona Góra caused by the synchronous dance of the fans. Constr. Rev. 2014, 1, 28–32. (In Polish).
4. Lasowicz, N. Falborski, T. Jankowski, R. Analysis of temporary steel grandstand with different bracing systems exposed tocrowd load. J. Meas. Eng. 2018, 6, 256–262. https://doi.org/10.21595/jme.2018.20422.
5. Dong‐il Ch Da‐jin, K. Kang‐geun, P. Dynamic Response of 100 m, 200 m, 300 m Lattice Domes with LRB Seismic Isolator. J. Civ.Eng. Archit. 2019, 13, 523–537. https://doi.org/10.17265/1934‐7359/2019.08.006.
6. Takeuchi, T. Ogawa, T. Kumagai, T. Seismic response evaluation of lattice shell roofs using amplification factors. J. Int. Assoc.Shell Spat. Struct. 2007, 48, 197–210.
7. Hosseini, M. Hajnasrollah, S. Herischian, M. A Comparative Study on the Seismic Behavior of Ribbed, Schwedler, and Diamatic Space Domesby Using Dynamic Analyses. In Proceedings of the 15th World Conference on Earthquake Engineering,
Lisbon, Portugal, 24–28 September 2012.
8. Berteto, S. Tarazaga, P.A. Sarlo, R. In situ seismic testing for experimental modal analysis of civil structures. Eng. Struct. 2022,270, 114773. https://doi.org/10.1016/j.engstruct.2022.114773.
9. Yahyai, M. Chahardoli, M. Seismic Behavior of Single Layer Schwedler Domes. Int. J. Space Struct. 2014, 29, 39–48.https://doi.org/10.1260/0266‐3511.29.1.39.
10. Pilarska, D. Maleska, T. Numerical Analysis of Steel Geodesic Dome under Seismic Excitations. Materials 2021, 14, 4493.https://doi.org/10.3390/ma14164493.
11. Lin, L. Huang, B. Sun, Y. Zhu, Y. Wang, D. Dynamic Response of a Single‐Layer Reticulated Dome during Aircraft Impact Based on S‐J Modeling Method. Shock. Vib. 2019, 2019, 9056810. https://doi.org/10.1155/2019/9056810.
12. Fan, F. Wang, D. Zhi, X. Shen, S. Failure modes of reticulated domes subjected to impact and the judgment. Thin‐Walled Struct.2010, 48, 143–149. https://doi.org/10.1016/j.tws.2009.08.005.
13. Chróścielewski, J. Miśkiewicz, M. Pyrzowski, Ł. Rucka, M. Wilde, K. Research of the viaduct over the railway tracks at the PGE Arena in Gdańsk during its implementation [In Polish]. Bud. Archit. 2013, 12, 15–22.
14. Sokol, M. Venglár, M. Lamperová, K. Márföldi, M. Performance Assessment of a Renovated Precast Concrete Bridge Using Static and Dynamic Tests. Appl. Sci. 2020, 10, 5904.
15. Sokol, M. Ároch, R. Lamperová, K. Marton, M. García‐Sanz‐Caledo, J. Parametric Analysis of Rotational Effects in Seismic Design of Tall Structures. Appl. Sci. 2021, 11, 597.
16. Sokol, M. Márföldi, M. Venglár, M. Lamperová, K. Evaluation of Performance Indicator of Railway Bridges Using Updated Finite Element Model. J. Mech. Eng. 2019, 69, 89–96.
17. Venglár, M. Sokol, M. Case study: The Harbor Bridge in Bratislava. Struct. Concr. 2020, 21, 2736–2748.
18. Lamperová, K. Sokol, M. Timková, B. Identification of Bearings State on the Bridge Checked by Dynamic Tests. J. Mech. Eng. 2020, 70, 67–76.
19. Sadeghi, H. Heristchian, M. Aziminejad, A. Wind effect on grooved and scallop domes. Eng. Struct. 2017, 148, 436–450.
20. Khosrowjerdi, S. Sarkardeh, H. Kioumarsi, M. Effect of wind load on different heritage dome buildings. Eur. Phys. J. Plus 2021, 136.
21. Tomasik, J. Obara, P. Dynamic stability of tensegrity structures‐Part1: The time‐independent external load. Materials 2023, 16, 580.
22. Mollaei, S. Babaei, M. Asemi, K. Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel. Arch. Appl. Mech. 2023, 93, 427–435. https://doi.org/10.1007/s00419‐022‐02132‐2.
23. Thompson, J.M.T. Hunt, G.W. A General Theory of Elastic Stability Wiley and Sons: Hoboken: NJ, USA, 1973.
24. Kleiber, M. Finite Element Method for Nonlinear Continuum Mechanics Warszawa‐Poznań PWN: Warszawa, Poland, 1985. (In Polish)
25. Bathe, K.J. Finite Element Procedure in Engineering Analysis Prentice Hall: New York, NY, USA, 1982.
26. Zabojszcza, P. Radoń, U. Effect of Increased Density of Nodes in Geodesic Dome on its Critical Load Capacity. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 052051. https://doi.org/10.1088/1757‐899X/471/5/052051.
27. Huseyin, K. Neale, K.W. Nonlinear Theory of Elastic Stability. J. Appl. Mech. 1976, 43, 521–522. https://doi.org/10.1115/1.3423916.
28. Zabojszcza, P. Radoń, U. Szaniec, W. Probabilistic Approach to Limit States of a Steel Dome. Materials 2021, 14, 5528.
29. Zabojszcza, P. Radoń, U. Stability analysis of the single‐layer dome in probabilistic description by the Monte Carlo method. J. Theor. Appl. Mech. 2020, 58, 425–436.
30. Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 1979, 15, 529–551. Appl. Sci. 2023, 13, 2729 21 of 21
31. Coutinho Alvaro, L.G.A. The application of the Lanczos Mode Superposition Method in dynamic analysis of offshore structures. Comput. Struct. 1987, 25, 615–625.
32. Gambolati, G. Putti, M. A comparison of Lanczos and optimization methods in the partial solution of sparse symmetric eigenproblems. Int. J. Numer. Methods Eng. 1994, 37, 605–621.
33. Pilarska, D. Two subdivision methods based on the regular octahedron for single‐ and double‐layer spherical geodesic domes.Int. J. Space Struct. 2020, 35, 160–173. https://doi.org/10.1177/0956059920956944.