Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[120610] Artykuł:

Dynamic Stability of Tensegrity Structures—Part I: The Time-Independent External Load

(Stabilność dynamiczna konstrukcji tensegrity — część I: Obciążenie zewnętrzne niezależne od czasu)
Czasopismo: Materials   Tom: 16, Zeszyt: 2, Strony: 580
ISSN:  1996-1944
Opublikowano: Styczeń 2023
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.00140.00  
Justyna Tomasik orcid logo WBiAKatedra Teorii Konstrukcji i BIMNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport5070.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

tensegrity structures  initial prestress forces  infinitesimal mechanism  stiffness  frequency 



Abstract:

The paper contains a parametric analysis of tensegrity structures subjected to time-independent external loads. A complete dynamic stability analysis is a three-step process. The first stage involves the identification of self-stress states and infinitesimal mechanisms. The next stage concentrates on the static and dynamic behavior of tensegrities under time-independent external loads, whereas the third is under periodic loads. In this paper, the first two stages are carried out. The structures built with the most popular tensegrity modules, Simplex and Quartex, are considered. The effect of the initial prestress on the static parameters and frequency is analyzed. To assess this behavior, a geometrically non-linear model is used.



B   I   B   L   I   O   G   R   A   F   I   A
Lee, S., Lieu, Q.X., Vo, T.P., Lee, J. Deep Neural Networks for Form-Finding of Tensegrity Structures. Mathematics 2022, 10, 1822.
Wang, Y., Xian, X., Luo, Y. Form-Finding of Tensegrity Structures via Rank Minimization of Force Density Matrix. Eng. Struct. 2021, 227, 111419.
Zhang, P., Zhou, J., Chen, J. Form-Finding of Complex Tensegrity Structures Using Constrained Optimization Method. Compos. Struct. 2021, 268, 113971.
Song, K., Scarpa, F., Schenk, M. Form-Finding of Tessellated Tensegrity Structures. Eng. Struct. 2022, 252, 113627.
Sultan, C., Skelton, R. Linear Dynamics of Tensegrity Structures. Eng. Struct. 2002, 24, 671–685.
Masic, M., Skelton, R.E. Selection of Prestress for Optimal Dynamic/Control Performance of Tensegrity Structures. Int. J. Solids Struct. 2006, 43, 2110–2125.
Ali, N.B.H., Rhode-Barbarigos, L., Albi, A.A.P., Smith, I.F. Design Optimization and Dynamic Analysis of a Tensegrity-Based Footbridge. Eng. Struct. 2010, 32, 3650–3659.
Lee, S., Lee, J. Optimum Self-Stress Design of Cable–Strut Structures Using Frequency Constraints. Int. J. Mech. Sci. 2014, 89, 462–469.
Caluwaerts, K., Carbajal, J.P. Energy Conserving Constant Shape Optimization of Tensegrity Structures. Int. J. Solids Struct. 2015, 58, 117–127.
Skelton, R.E., Pinaud, J.P., Mingori, D.L. Dynamics of the Shell Class of Tensegrity Structures. J. Frankl. Inst. 2001, 338, 255–320.
Skelton, R. Dynamics and Control of Tensegrity Systems. In Proceedings of the IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, Munich, Germany, 18–22 July 2005, Ulbrich, H., Günthner, W., Eds., Springer: Dordrecht, The Netherlands, 2005, pp. 309–318. [Google Scholar]
Oliveto, N.D., Sivaselvan, M.V. Dynamic Analysis of Tensegrity Structures Using a Complementarity Framework. Comput. Struct. 2011, 89, 2471–2483.
Fraternali, F., Senatore, L., Daraio, C. Solitary Waves on Tensegrity Lattices. J. Mech. Phys. Solids 2012, 60, 1137–1144.
Faroughi, S., Lee, J. Geometrical Nonlinear Analysis of Tensegrity Based on a Co-Rotational Method. Adv. Struct. Eng. 2014, 17, 41–51.
Faroughi, S., Lee, J. Analysis of Tensegrity Structures Subject to Dynamic Loading Using a Newmark Approach. J. Build. Eng. 2015, 2, 1–8.
Ashwear, N., Tamadapu, G., Eriksson, A. Optimization of Modular Tensegrity Structures for High Stiffness and Frequency Separation Requirements. Int. J. Solids Struct. 2016, 80, 297–309.
Kan, Z., Peng, H., Chen, B., Zhong, W. Nonlinear Dynamic and Deployment Analysis of Clustered Tensegrity Structures Using a Positional Formulation FEM. Compos. Struct. 2018, 187, 241–258.
Domer, B., Fest, E., Lalit, V., Smith, I.F.C. Combining Dynamic Relaxation Method with Artificial Neural Networks to Enhance Simulation of Tensegrity Structures. J. Struct. Eng. 2003, 129, 672–681.
Gilewski, W., Kłosowska, J., Obara, P. The influence of self-stress on the behavior of tensegrity-like real structure. MATEC Web Conf. 2017, 117, 00079.
Gilewski, W., Obara, P., Kłosowska, J. Self-stress control of real civil engineering tensegrity structures. AIP Conf. Proc. 2018, 1922, 150004. [Google Scholar]
Obara, P., Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 2—Quantitative Analysis. Appl. Sci. 2021, 11, 602.
Obara, P., Tomasik, J. Active Control of Stiffness of Tensegrity Plate-like Structures Built with Simplex Modules. Materials 2021, 14, 7888. [PubMed]
Oppenheim, I.J., Williams, W.O. Vibration of an Elastic Tensegrity Structure. Eur. J. Mech. A Solids 2001, 20, 1023–1031.
Murakami, H., Nishimura, Y. Static and Dynamic Characterization of Regular Truncated Icosahedral and Dodecahedral Tensegrity Modules. Int. J. Solids Struct. 2001, 38, 9359–9381.
Chen, Y., Feng, J. Initial Prestress Distribution and Natural Vibration Analysis of Tensegrity Structures Based on Group Theory. Int. J. Struct. Stab. 2012, 12, 213–231.
Murakami, H., Nishimura, Y. Static and Dynamic Characterization of Some Tensegrity Modules. J. Appl. Mech 2001, 68, 19–27.
Bel Hadj Ali, N., Smith, I.F.C. Dynamic Behavior and Vibration Control of a Tensegrity Structure. Int. J. Solids Struct. 2010, 47, 1285–1296.
Bolotin, V.V. Dinamiczeskaja Ustojcziwost Uprugich Sistiem, Gostekhizdat: Moscow, Russia, 1956. [Google Scholar]
Gilewski, W., Kłosowska, J., Obara, P. Parametric analysis of some tensegrity structures. MATEC Web Conf. 2019, 262, 10003.
Murakami, H. Static and Dynamic Analyses of Tensegrity Structures. Part 1. Nonlinear Equations of Motion. Int. J. Solids Struct. 2001, 20, 3599–3613.
Bathe, K.J. Finite Element Procedures in Engineering Analysis, Prentice Hall: New York, NY, USA, 1996. [Google Scholar]
Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann: Oxford, UK, 2013, ISBN 978-1-85617-633-0. [Google Scholar]
Obara, P., Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis. Appl. Sci. 2020, 10, 7042.
Motro, R. Tensegrity Systems: The State of the Art. Int. J. Solids Struct. 1992, 7, 75–83.
EN 1993-1-11: 2006, Eurocode 3: Design of Steel Structures—Part 1–11: Design of Structures with Tension Components. British Standard: London, UK, 2006.
EN 1993-1-1: 2005, Eurocode 3: Design of Steel Structures—Part 1–1: General Rules and Rules for Buildings. British Standard: London, UK, 2005.