Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[119050] Artykuł:

Strengthening of Structural Flexural Glued Laminated Beams of Ashlar with Cords and Carbon Laminates

Czasopismo: Materials   Tom: 15, Zeszyt: 23, Strony: 1-15
ISSN:  1996-1944
Opublikowano: Listopad 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Wdowiak-Postulak orcid logo WBiAKatedra Wytrzymałości Materiałów i Analiz Konstrukcji Budowlanych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

glued laminated beams  fibre-reinforced timber  load-bearing capacity  stiffness  ductility  modulus of elasticity  bending test  carbon cords  carbon laminates  knots 



Abstract:

Changes in the condition of existing timber structures can be caused by fatigue or biological attack, among other things. Replacing damaged timber is still very expensive, so it seems more advisable to repair or reinforce damaged elements. Therefore, in order to improve the static performance analysis of timber structures, reinforcement applications in timber elements are necessary. In this experimental study, technical-scale glulam beams measuring 82 × 162 × 3650 mm, which were reinforced with carbon strands and carbon laminates, were tested in flexure. A four-point bending test was used to determine the effectiveness of the reinforcement used in the timber beams. Internal strengthening (namely, glued carbon cords placed into cut grooves in the last and penultimate lamella) and an external surface of near-surface mounted (NSM) carbon laminates glued to the bottom surface of the beam were used to reinforce the laminated ashlar beams. As a result of this study, it was found that the bending-based mechanical properties of ash wood beams reinforced with carbon fibre-reinforced polymer composites were better than those of the reference beams. In this work, the beams were analysed in terms of the reinforcement variables used and the results were compared with those for the beams tested without reinforcement. This work proves the good behaviour of carbon fibre reinforced plastic (CFRP—Carbon fibre reinforced polymer) cords when applied to timber beams and carbon laminates. This study illustrated the different reinforcement mechanisms and showed their structural properties. Compared to the reference samples, it was found that reinforcement with carbon strings or carbon laminates increased the load-bearing capacity, flexural strength and modulus of elasticity, and reduced the amount of displacement of the timber materials, which is an excellent alternative to the use of ashlar and, above all, inferior grade materials due to the current shortage of choice grade. Experimental results showed that, with the use of carbon fibre (carbon cords SikaWrap® FX-50 C—Sika Poland Sp. z o.o., Warsaw), the load bearing capacity increased by 35.58%, or with carbon cords SikaWrap® FX-50 C and carbon laminates S&P C-Laminate type HM 50/1.4 - S&P Poland Sp. z o.o., Malbork, by 45.42%, compared to the unreinforced beams.



B   I   B   L   I   O   G   R   A   F   I   A
1. Kılınçarslan, Ş.
Şimşek Türker, Y. Ahşap Malzemelerin Islanabilirlik Özelliği Üzerine Isıl İşlem Uygulamasının Etkisi. Mühendislik Bilimleri Ve Tasarım Derg. 2020, 8, 460–466.
2. Sahin, H.T.
Arslan, M.B.
Korkut, S.
Sahin, C. Colour Changes of Heat-Treated Woods of Red-Bud Maple, European Hophornbeam and Oak. Color Res. Appl. 2011, 36, 462–466.
3. Sahin, C.K.
Onay, B. Alternatıve Wood Species for Playgrounds Wood from Fruit Trees. Wood Research 2020, 65, 149–160.
4. Sahin, C.
Topay, M.
Var, A.A. A Study on Some Wood Species for Landscape Applications: Surface Color, Hardness and Roughness Changes at Outdoor Conditions. Wood Res. 2020, 65, 395–404.
5. Şimşek Türker, Y.. Strengthening of Wood Materials Using Composites. In Proceedings of the 7th International Conference on Computational and Experimental Science and Engineering (ICCESEN2020), Antalya, Turkey, 21–25 October 2020
pp. 244–249.
6. Kilinçarslan, Ş.
Türker, Y. Strengthening of Solid Beam with Fiber Reinforced Polymers. Turk. J. Eng. 2022, 7, 166–171. https://doi.org/10.31127/tuje.1026075.
7. Fridley, K.J. Wood and Wood-Based Materials: Current Status and Future of a Structural Material. J. Mater. Civ. Eng. 2002, 14, 91–96. https://doi.org/10.1061/(asce)0899-1561(2002)14:2(91).
8. Foliente, G.C. Hysteresis Modeling of Wood Joints and Structural Systems. J. Struct. Eng. 1995, 121, 1013–1022. https://doi.org/10.1061/(asce)0733-9445(1995)121:6(1013).
9. Saribiyik, M.
Akgül, T. GFRP Bar Element to Strengthen Timber Connection Systems. Sci. Res. Essays 2010, 5, 1713–1719.
10. Harrach, D.
Muayad, H.
Majid Movahedi, R. Reliability-based numerical analysis of glulam beams reinforced by CFRP plate. Sci. Rep. 2022, 12, 13587.
11. Ramage, M.H.
Burridge, H.
Busse-Wicher, M.
Fereday, G.
Reynolds, T.
Shah, D.U.
Wu, G.
Yu, L.
Fleming, P.
Dens-ley-Tingley, D.
et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. https://doi.org/10.1016/j.rser.2016.09.107.
12. Van De Lindt, J.W.
Pei, S.
Pryor, S.E.
Shimizu, H.
Isoda, H. Experimental Seismic Response of a Full-Scale Six-Story Light-Frame Wood Building. J. Struct. Eng. 2010, 136, 1262–1272. https://doi.org/10.1061/(asce)st.1943-541x.0000222.
13. Ceccotti, A.
Sandhaas, C.
Okabe, M.
Yasumura, M.
Minowa, C.
Kawai, N. SOFIE project—3D shaking table test on a sev-en-storey full-scale cross-laminated timber building. Earthq. Eng. Struct. Dyn. 2013, 42, 2003–2021. https://doi.org/10.1002/eqe.2309.
14. Herzog, T.
Natterer, J.
Schweitzer, R.
Volz, M.
Winter, W. Timber Construction Manual
Walter de Gruyter : Basel, Switzerland 2012. https://doi.org/10.1002/9781118279687..
15. Monahan, J.
Powell, J. An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy Build. 2011, 43, 179–188. https://doi.org/10.1016/j.enbuild.2010.09.005.
16. Yadav, R.
Kumar, J. Engineered wood products as a sustainable construction material: A review. Eng. Wood Prod. Constr. 2021. https://doi.org/10.5772/INTECHOPEN.99597.
17. Dietsch, P.
Tannert, T. Assessing the integrity of glued-laminated timber elements. Constr. Build. Mater. 2015, 101, 1259–1270. https://doi.org/10.1016/j.conbuildmat.2015.06.064.
18. Frangi, A.
Fontana, M.
Mischler, A. Shear behaviour of bond lines in glued laminated timber beams at high temperatures. Wood Sci. Technol. 2004, 38, 119–126. https://doi.org/10.1007/s00226-004-0223-y.
19. Falk, R.H.
Colling, F. Laminating Effects in Glued-Laminated Timber Beams. J. Struct. Eng. 1995, 121, 1857–1863. https://doi.org/10.1061/(asce)0733-9445(1995)121:12(1857).
20. Anshari, B.
Guan, Z.
Kitamori, A.
Jung, K.
Komatsu, K. Structural behaviour of glued laminated timber beams pre-stressed by compressed wood. Constr. Build. Mater. 2012, 29, 24–32. https://doi.org/10.1016/j.conbuildmat.2011.10.002.
21. Bourreau, D.
Aimene, Y.
Beauchêne, J.
Thibaut, B. Feasibility of glued laminated timber beams with tropical hardwoods. Eur. J. Wood Wood Prod. 2013, 71, 653–662. https://doi.org/10.1007/s00107-013-0721-4.
22. Navaratnam, S.
Thamboo, J.
Ponnampalam, T.
Venkatesan, S.
Chong, K.B. Mechanical performance of glued-in rod glu-lam beam to column moment connection: An experimental study. J. Build. Eng. 2022, 50, 104131. https://doi.org/10.1016/j.jobe.2022.104131.
23. Issa, C.A.
Kmeid, Z. Advanced wood engineering: Glulam beams. Constr. Build. Mater. 2005, 19, 99–106. https://doi.org/10.1016/j.conbuildmat.2004.05.013.
24. Rescalvo, F.J.
Timbolmas, C.
Bravo, R.
Valverde-Palacios, I.
Gallego, A. Improving ductility and bending features of pop-lar glued laminated beams by means of embedded carbon material. Constr. Build. Mater. 2021, 304, 124469. https://doi.org/10.1016/j.conbuildmat.2021.124469.
25. Morin-Bernard, A.
Blanchet, P.
Dagenais, C.
Achim, A. Glued-laminated timber from northern hardwoods: Effect of fin-ger-joint profile on lamellae tensile strength. Constr. Build. Mater. 2020, 271, 121591. https://doi.org/10.1016/j.conbuildmat.2020.121591.
26. Wdowiak, A.
Brol, J. Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Rein-forced Polymers Rods. Materials 2019, 12, 3141. https://doi.org/10.3390/ma12193141.
27. Brol, J.
Wdowiak-Postulak, A. Old Timber Reinforcement with FRPs. Materials 2019, 12, 4197. https://doi.org/10.3390/ma12244197.
28. Brol, J.
Wdowiak, A. The Use of Glass and Aramid Fibres for the Strengthening of Timber Structures
Annals of Warsaw University of Life Sciences, Forestry and Wood Technology: Warsaw, Poland, 2017
pp. 128–138.
29. Brol, J.
Nowak, T.
Wdowiak, A. Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials
Annals of Warsaw University of Life Sciences, Forestry and Wood Technology: Warsaw, Poland, 2018
pp. 274–282.
30. Wdowiak, A. Analysis of bent timber beam reinforcement with the application of composite materials. Struct. Environ. 2016, 8, 10–16.
31. Wdowiak, A. Właściwości Strukturalno—Wytrzymałościowe Zginanych Belek Drewnianych Wzmocnionych Kompozytami Włóknistymi [Structural and Strength Properties of Bent Wooden Beams Reinforced with Fibre Composites]. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 12 April 2019.
32. Wdowiak, A.
Kroner, A. Wpływ niejednorodności struktury zginanych belek z drewna klejonego na efekt ich wzmoc-nienia. Mater. Bud. 2017, 1, 87–89.
33. Wdowiak, A.
Brol, J. Methods of strength grading of structural timber—Comparative analysis of visual and machine grad-ing on the example of Scots pine timber from four natural forest regions of Poland. Struct. Environ. 2019, 11, 210–224.
34. Wdowiak-Postulak, A.
Świt, G. Behavior of Glulam Beams Strengthened in bending with BFRP Fabrics. Civ. Environ. Eng. Rep. 2021, 31, 1–14. https://doi.org/10.2478/ceer-2021-0016.
35. Kamionka, L.
Wdowiak-Postulak, A.
Hajdenrajch, A. Nowoczesne budownictwo drewniane w technologii CLT na przykładzie budynku Bioklimatycznej Jednostki Modularnej. Materiały Budowlane 2022, 49–51. https://doi.org/10.15199/33.2022.03.07.
36. Wdowiak-Postulak, A. Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials 2020, 14, 51. https://doi.org/10.3390/ma14010051.
37. Wdowiak-Postulak, A. Natural Fibre as Reinforcement for Vintage Wood. Materials 2020, 13, 4799. https://doi.org/10.3390/ma13214799.
38. Wdowiak-Postulak, A.
Brol, J. Ductility of the Tensile Zone in Bent Wooden Beams Strengthened with CFRP Materials. Materials 2020, 13, 5451.
39. Wdowiak-Postulak, A. Ductility, load capacity and bending stiffness of Scandinavian pine beams from waste timber strengthened with jute fibres. Drewno 2022, 65. https://doi.org/10.12841/wood.1644-3985.417.01.
40. Xian, G.
Guo, R.
Li, C.
Wang, Y. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022, 293, 115719. https://doi.org/10.1016/j.compstruct.2022.115719.
41. Fossetti, M.
Minafò, G.
Papia, M. Flexural behaviour of glulam timber beams reinforced with FRP cords. Constr. Build. Mater. 2015, 95, 54–64. https://doi.org/10.1016/j.conbuildmat.2015.07.116.
42. Nadir, Y.
Nagarajan, P.
Ameen, M.
M, M.A. Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Constr. Build. Mater. 2016, 112, 547–555. https://doi.org/10.1016/j.conbuildmat.2016.02.133.
43. PN-EN 338:2016-06
Structural Timber—Strength Classes. Polish Committee for Standardization: Warsaw, Poland, 2016.
44. Product Information Sheet Sika Poland Sp. z o.o. Available online: https://pol.sika.com/content/dam/dms/plcon/8/sikawrap_fx-50_c.pdf (accessed on October 2022).
45. Product Information Sheet Sika Poland Sp. z o.o. Available online: https://pol.sika.com/content/dam/dms/plcon/e/sikadur_-330.pdf (accessed on June 2021).
46. Carbon fibre composite tapes embedded in a matrix of epoxy resin - S&P Poland Sp. z o.o.. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/c-laminates_polska_ver012019-low.pdf (ac-cessed on January 2019).
47. Two-component adhesive for FRP mats on an epoxy resin basis - S&P Poland Sp. z o.o. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/resin55_hp_polska_ver20190326_web.pdf (accessed on March 2019).
48. PN-D-94021:2013-10
Softwood Structural Sawn Timber Sorted Using Strength Methods. Polish Committee for Standardiza-tion: Warsaw, Poland, 2013.
49. PN-EN 408+A1:2012
Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. Polish Committee for Standardization: Warsaw, Poland, 2012.
50. PN-EN 1995-1-1:2010 Eurocode 5
Design of Timber Structures. Part 1-1: General. Common Rules and Rules for Buildings. Polish Standards Committee: Warsaw, Poland, 2010.