Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[116480] Artykuł:

Geospatial Products in the Registration of Photovoltaic Installations and Their Parameters

(Produkty geoprzestrzenne w rejestracji instalacji fotowoltaicznych i ich parametrów)
Czasopismo: XXVII FIG CONGRESS 2022  
Opublikowano: Lipiec 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Cienciała orcid logo WiŚGiEKatedra Geodezji i Geomatyki*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka33.00.00  
Agnieszka Bieda Niespoza "N" jednostkiInżynieria lądowa i transport33.00.00  
Szymon Sobura orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka33.00.00  

Grupa MNiSW:  Pozostałe publikacje (niepunktowane)
Punkty MNiSW: 0


Pełny tekstPełny tekst    
Keywords:

geospatial data  photovoltaic installations  geographic information systems  public  database  GIS  UAV 



Abstract:

The global trends and activities of individual countries in the promotion of renewable
energy sources, as well as the development of geographic information systems bring demand
for new opportunities in the field of creating databases related to their attributes, including their
spatial location. For example, more and more often data on already implemented photovoltaic
installations are registered and made available in public registers or open access Geographic
Information System (GIS) tools. Such portals often enable to provide information on the
location of existing installations, their peak power and productivity, predict areas that would
be suitable for situating newly planned installations. In turn, modern surveying and
photogrammetry provide products to quickly and efficiently record the location of panels and
allow one to determine their parameters. There is widespread recognition that effective control
over future photovoltaic installations requires proper knowledge about the remaining technical
potential and the local demand to use the generated electricity. Recording the location of
existing installations can constitute an important activity in the process of comparison of the
capacities of newly designed installations with the remaining regional potential, as extensive
and uncontrolled installation of photovoltaic plants can lead to problems with the electricity
grid, including grid failures.
For the purposes of the presentation, the results of the research of the authors on the
subject of recording the location of photovoltaic installations in public databases from selected
countries will be listed in order to develop standards and to specify good practices in the field.
Moreover, the usefulness of geospatial products, gathered on the basis of modern surveying and
photogrammetric methods, in the process of the acquisition of the aforementioned data will be
analysed.



B   I   B   L   I   O   G   R   A   F   I   A
1. BEIS 2020. UK Department for Business, Energy and Industrial Strategy (BEIS). Solar
photovoltaics deployment statistics. https://data.gov.uk/dataset/9238d05e-b9fe-4745-
8380-f8af8dd149d1/solar-photovoltaics-deployment-statistics.
2. Bieda, A., Cienciała, A. (2021). Towards a Renewable Energy Source Cadastre—A
Review of Examples from around the World. Energies 14 (23).
3. Boemi, S.N., Papadopoulos, A.M., Karagiannidis, A., Kontogianni, S. (2010). Barriers
on the propagation of renewable energy sources and sustainable solid waste
management practices in Greece. Waste Manag. Res. 2010, 28, 967–976.
4. Fuhs, M. (2013). Ein bisschen Guerilla ist gut. PV Mag 2, 54.
5. Henneaux, P., Labeau, P.-E., Maun, J.-C. (2012). A level-1 probabilistic risk assessment
to blackout hazard in transmission power systems. Reliab. Eng. Syst. Saf.
6. Huerta Herraiz, I., Pliego Marugaan, A., García Marquez, F.P. (2020). Photovoltaic
plant condition monitoring using thermal images analysis by convolutional neural
network-based structure, Renewable Energy 153, pp. 354 - 348.
7. Kausika, B.B., Nijmeijer, D., Reimerink, I., Brouwer, P., Liem, V. (2021). GeoAI for
detection of solar photovoltaic installations in the Netherlands, Energy and AI 6.
8. Kapfenberger-Pock, A., Horst, B. City of Graz Solar Roof Cadastre GIS-Based Local
Analysis for Solar Plants – a Planning Tool Dipl. Ing.
9. Mainzer, K., Fath, K., McKenna, R., Stengel, J., Fichtner, W., Schultmann, F. (2014).
A high-resolution determination of the technical potential for residential-roof-mounted
photovoltaic systems in Germany, Solar Energy 105, pp. 715-731.
10. Malof, J. M., Bradbury, K., Collins, L.M., Newell, R.G. (2016). Automatic detection of
solar photovoltaic arrays in high resolution aerial imagery, Applied Energy 183, pp.
229-240.
11. Matsuoka, R., Nagusa, I., Yasuhara, H., Mori, M., Katayama, T., Yachi, N., Hasui, A.,
Katakuse, M., Atagi, T. (2012). Measurement of large-scale solar power plant by using
images acquired by non-metric digital camera on board UAV. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIXB1, XXII ISPRS Congress, Melbourne, Australia.
12. Mayor of London (2018). Solar Action Plan for London. Greater London Authority.
13. Mickrenska-Cherneva, C., Mladenov, R. (2020). Implementation of GIS Application
for Water Company Needs. Geomat. Environ. Eng. (14), pp. 47–56.
14. Ogryzek, M., Tarantino, E., Rząsa, K. (2020). Infrastructure of the Spatial Information
in the European Community (INSPIRE) Based on Examples of Italy and
Poland, International Journal of Geo-Information 9(12), 755.
15. Quirós, E., Pozo, M., Ceballos, J. (2018). Solar potential of rooftops in Cáceres city,
Spain, Journal of Maps 14 (1), 44-51.
16. Renewables 2019 Global Status Report, https://www.ren21.net/gsr-2019, access:
29.04.2022
17. Solar Atlas of Amsterdam, https://www.zonatlas.nl/amsterdam, access: 29.04.2022
18. Spain Thermal Installations Map, https://www.esios.ree.es/en/interesting-maps/solarthermal-installations-map, access: 29.04.2022
19. Stowell, D., Kelly, J., Tanner, D. et al. (2020). A harmonised, high-coverage, open
dataset of solar photovoltaic installations in the UK. Sci Data 7, 394.
20. Thebault, M., Berrah L.-A., Desthieux, G., Ménézo, Ch. (2019). Towards a Solar
Cadaster for the Monitoring of Solar Energy Urban Deployment: the Case of the Greater
Geneva. IEA SHC International Conference on Solar Heating and Cooling for Buildings
and Industry, ISES Solar World Congress 2019.
21. Vega Díaz, J.J., Vlaminck, M., Lefkaditis, D., Orjuela Vargas, S.A., Luong, H. (2020).
Solar Panel Detection within Complex Backgrounds Using Thermal Images Acquired
by UAVs. Sensors 20, 6219.
22. Vienna City Map, https://www.wien.gv.at/umweltgut/public, access: 29.04.2022
23. Wiki-Solar, https://www.wiki-solar.org, access: 29.04.2022