Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[116000] Artykuł:

Optimization of Steel Roof Framing Taking into Account the Random Nature of Design Parameters

(Optymalizacja stalowego szkieletu dachowego z uwzględnieniem losowości parametrów projektowych)
Czasopismo: Materials   Tom: 15, Zeszyt: 5017, Strony: 1-19
ISSN:  1996-1944
Opublikowano: Lipiec 2022
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

steel roof framing  stability  reliability  deterministic optimization  robust optimization 



Abstract:

The main subject of this paper is an optimization of steel roof framing used as a load-bearing structure in commercial pavilions. The authors wanted to draw attention to the necessity to take into account the uncertainty in the description of design parameters during optimization. In the first step, using geometrically nonlinear relationships, a static-strength analysis is performed. The decisive form of loss of stability in this steel roof framing is the jump of the node (snap-through), and not the buckling of the most stressed structure bars. Therefore, when creating the limit function, it was decided to make a condition limiting the permissible displacement. Values of the implicit limit function were calculated with Abaqus software based on the finite element method. Reliability analysis, and robust and deterministic optimization were performed using Numpress Explore software. Numpress Explore software communicates with the Abaqus software to perform analysis. The task ended with the generation of information that contained the failure probability, reliability index and the values of optimized areas of the bars’ cross-sections. The end result of the optimization is not a cost analysis, but an assessment of the safety of the structure.



B   I   B   L   I   O   G   R   A   F   I   A
Tomei, V. Grande, E. Imbimbo, M. Design optimization of gridshells equipped with pre-tensioned rods. J. Build. Eng. 2022, 52, 104407. [Google Scholar] [CrossRef]
Rackwitz, R. Fiessler, B. Structural reliability under combined random load sequences. Comput. Struct. 1978, 9, 489–494. [Google Scholar] [CrossRef]
Mochocki, W. Radoń, U. Analysis of Basic Failure Scenarios of a Truss Tower in a Probabilistic Approach. Appl. Sci. 2019, 9, 2662. [Google Scholar] [CrossRef][Green Version]
Kubicka, K. Obara, P. Radon, U. Szaniec, W. Assessment of steel truss fire safety in terms of the system reliability analysis. Arch. Civ. Mech. Eng. 2019, 19, 417–427. [Google Scholar] [CrossRef]
Zabojszcza, P. Radoń, U. Szaniec, W. Probabilistic Approach to Limit States of a Steel Dome. Materials 2021, 14, 5528. [Google Scholar] [CrossRef]
Zabojszcza, P. Radoń, U. The Impact of Node Location Imperfections on the Reliability of Single-Layer Steel Domes. Appl. Sci. 2019, 9, 2742. [Google Scholar] [CrossRef][Green Version]
Hohenbichler, M. Gollwitzer, S. Kruse, W. Rackwitz, R. New light on first- and second-order reliability methods. Struct. Saf. 1987, 4, 267–284. [Google Scholar] [CrossRef]
Der Kiureghian, A. De Stefano, M. Efficient Algorithm for Second-Order Reliability Analysis. J. Eng. Mech. 1991, 117, 2904–2923. [Google Scholar] [CrossRef]
Dudzik, A. Reliability Assessment of Steel-Aluminium Lattice Tower. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032072. [Google Scholar] [CrossRef][Green Version]
Rossi, L. Winands, M.H.M. Butenweg, C. Monte Carlo Tree Search as an intelligent search tool in structural design problems. Eng. Comput. 2021, 1–18. [Google Scholar] [CrossRef]
Zabojszcza, P. Radoń, U. Stability analysis of the single-layer dome in probabilistic description by the Monte Carlo method. J. Theor. Appl. Mech. 2020, 58, 425–436. [Google Scholar] [CrossRef]
Potrzeszcz-Sut, B. Reliability Analysis of Shell Truss Structure by Hybrid Monte Carlo Method. J. Theor. Appl. Mech. 2020, 58, 469–482. [Google Scholar] [CrossRef]
Dudzik, A. Potrzeszcz-Sut, B. Hybrid Approach to the First Order Reliability Method in the Reliability Analysis of a Spatial Structure. Appl. Sci. 2021, 11, 648. [Google Scholar] [CrossRef]
Fujita, M. Rackwitz, R. Updating first-and second-order reliability estimates by importance sampling. Doboku Gakkai Ronbunshu 1988, 1988, 53–59. [Google Scholar] [CrossRef]
Kubicka, K. Pawlak, U. Radoń, U. Influence of the Thermal Insulation Type and Thickness on the Structure Mechanical Response Under Fire Conditions. Appl. Sci. 2019, 9, 2606. [Google Scholar] [CrossRef][Green Version]
Kubicka, K. Radoń, U. Szaniec, W. Pawlak, U. Comparative analysis of the reliability of steel structure with pinned and rigidnodes subjected to fire. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022051. [Google Scholar] [CrossRef]
Kubicka, K. Radoń, U. The impact of support type on the reliability of steel trusses subjected to the action of a fire. Appl. Sci. 2020, 10, 7916. [Google Scholar] [CrossRef]
Kubicka, K. Radoń, U. Influence of randomness of buckling coefficient on the reliability index’s value under fire conditions. Arch. Civ. Eng. 2018, 64, 173–179. [Google Scholar] [CrossRef][Green Version]
Kuschel, N. Rackwitz, R. Optimal design under time-variant reliability constraints. Struct. Saf. 2000, 22, 113–128. [Google Scholar] [CrossRef]
Hurtado, J.E. Reliability Problems in Earthquake Engineering
Monograph CIMNE IS-63 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2010
ISBN 978-84-96736-86-3. [Google Scholar]
Baltzopoulos, G. Grella, A. Iervolino, I. Seismic reliability implied by behavior-factor-based design. Earthq. Eng. Struct. Dyn. 2021, 50, 4076–4096. [Google Scholar] [CrossRef]
Vahid, J. Yazdani, M. Seismic reliability and limit state risk evaluation of plain concrete arch bridges. Struct. Infrastruct. Eng. 2021, 17, 170–190. [Google Scholar] [CrossRef]
Streicher, H. Rackwitz, R. Time-variant reliability-oriented structural optimization and a renewal model for life-cycle costing. Probabilistic Eng. Mech. 2004, 19, 171–183. [Google Scholar] [CrossRef]
Streicher, H. Rackwitz, R. Structural optimization—A one level approach. In AMAS Workshop on Reliability-Based Design and Optimization-RBO’02 Jendo, W.S., Doliński, K., Kleiber, M., Eds. IPPT: Warsaw, Poland, 2002. [Google Scholar]
Kuschel, N. Rackwitz, R. Two basic problems in reliability-based structural optimization. Math. Methods Oper. Res. 1997, 46, 309–333. [Google Scholar] [CrossRef]
Chróścielewski, J. Burzyński, S. Daszkiewicz, K. Sobczyk, B. Witkowski, W. Wprowadzenie do modelowania MES w programie ABAQUS. In Introduction to FEM Modeling in Abaqus Software Politechnika Gdańska: Gdańsk, Poland, 2014 ISBN 978-83-7348-557-0. (In Polish) [Google Scholar]
Knabel, J. Kolanek, K. Nguyen Hoang, V. Stocki, R. Tauzowski, P. Structural reliability analysis using object oriented environment STAND. In Proceedings of the 36th Solid Mechanics Conference, Gdansk, Poland, 9–12 September 2008. [Google Scholar]
Kowalczyk, P. Rojek, J. Stocki, R. Bednarek, T. Tauzowski, P. Lasota, R. Lumelskyy, D. Wawrzyk, K. NUMPRESS—Integrated computer system for analysis and optimization of industrial sheet metal forming processes. HUTNIK–WIADOMOSCI HUTNICZE 2014, 81, 56–63. [Google Scholar]
Bergan, P.G. Solution techniques for nonlinear finite element problems. Int. J. Numer. Methods Eng. 1978, 12, 1677–1696. [Google Scholar] [CrossRef]
Bergan, P.G. Soreide, T.H. Solution of large displacement and stability using the current stiffness parameter. In Finite Elements in Nonlinear Mechanics: Papers Presented at the International Conference on Finite Elements in Nonlinear Solid and Structural Mechanics, Held at Geilo, Norway, August 1977 Tapir, Norwegian Institute of Technology: Trondheim, Norway, 1977 pp. 647–669. [Google Scholar]
Riks, E. The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 1972, 39, 1060–1065. [Google Scholar] [CrossRef]
Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 1979, 15, 529–551. [Google Scholar] [CrossRef]
Youn, B.D. Choi, K.K. A new response surface methodology for reliability-based design optimization. Comput. Struct. 2004, 82, 241–256. [Google Scholar] [CrossRef]
Doltsinis, I. Kang, Z. Robust design of non-linear structures using optimization methods. Comput. Methods Appl. Mech. Eng. 2005, 194, 1179–1795. [Google Scholar] [CrossRef]
Chen, W. Fu, W. Biggers, S.B. Latour, R.A. An affordable approach for robust design of thick laminated composite structure. Optim. Eng. 2000, 1, 305–322. [Google Scholar] [CrossRef]
Zabojszcza, P. Radoń, U. Tauzowski, P. Robust optimization of a single-layer lattice dome. In Modern Trends in Research on Steel, Aluminium and Composite Structures, Proceedings of the XIV International Conference on Metal Structures (ICMS2021), Poznań, Poland, 16–18 June 2021 Routledge: London, UK, 2021 p. 456. [Google Scholar] [CrossRef]
Richardson, J.N. Coelho, R.F. Adriaessens, S. Robust topology optimization of truss structures with random loading and material properties: A multiobjective perspective. Comput. Struct. 2015, 154, 41–47. [Google Scholar] [CrossRef]
Li, Y.Q. Cui, Z.S. Ruan, X.Y. Zhang, D.J. CAE-based six sigma robust optimization for deep-drawing sheet metal process. Int. J. Adv. Manuf. Technol. 2006, 30, 631–637. [Google Scholar] [CrossRef]
Tang, L.C. Xu, K. A unified approach for dual response surface optimization. J. Qual. Technol. 2002, 34, 437–447. [Google Scholar] [CrossRef]
Vining, G.G. Myers, R.H. Combining Taguchi and response surface philosophies: A dual response approach. J. Qual. Technol. 1990, 22, 38–45. [Google Scholar] [CrossRef]
Yeniay, O. Unal, R. Lepsch, A.R. Using dual response surfaces to reduce variability in launch vehicle design: A case study. Reliab. Eng. Syst. Saf. 2006, 91, 407–412. [Google Scholar] [CrossRef]
Simpson, T.W. Mauery, T.M. Korte, J.J. Mistree, F. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 2001, 39, 2233–2241. [Google Scholar] [CrossRef][Green Version]
Simpson, T.W. A Concept Exploration Method for Product Family Design. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1998. [Google Scholar]
Gano, S.E. Renaud, J.E. Martin, J.D. Simpson, T.W. Update strategies for kriging models used in variable fidelity optimization. Struct. Multidiscip. Optim. 2006, 32, 287–298. [Google Scholar] [CrossRef]
Nelder, J.A. Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
Subrahmanyam, M.B. An extension of the simplex method to constrained nonlinear optimization. J. Optim. Theory Appl. 1989, 62, 311–319. [Google Scholar] [CrossRef]
Sasena, M.J. Parkinson, M. Reed, M.P. Papalambros, P.Y. Goovaerts, P. Improving an ergonomic testing procedure via approximation-based adaptive experimental design. ASME J. Mech. Des. 2005, 127, 1006–1013. [Google Scholar] [CrossRef][Green Version]
Stocki, R. Optymalizacja Niezawodnościowa Konstrukcji Prętowych w Zakresie Dużych Przemieszczeń, Teoria i Program Komputerowy. Ph.D. Thesis, IPPT PAN, Warszawa, Poland, 1999. (In Polish). [Google Scholar]
Liefvendahl, M. Stocki, R. A study on algorithms for optimization of Latin hypercubes. J. Stat. Plan. Inference 2006, 139, 3231–3247. [Google Scholar] [CrossRef][Green Version]
Park, J.-S. Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan. Inference 1994, 39, 95–111. [Google Scholar] [CrossRef]
Shimoyama, K. Oyama, A. Fujii, K. A new efficient and useful robust optimization approach-design for multi-objective six sigma. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005 Volume 1, pp. 950–957. [Google Scholar]
Rosenblatt, M. Remarks on a Multivariate Transformation. Ann. Math. Stat. 1952, 23, 470–472. [Google Scholar] [CrossRef]
Nataf, A. Determination des distribution dont les marges sont donnees. Comptes Redus L’academie Sci. 1962, 225, 42–43. [Google Scholar]