Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[115640] Artykuł:

Using Reclaimed Cement Concrete in Pavement Base Mixes with Foamed Bitumen Produced in Cold Recycling Technology

Czasopismo: Materials   Tom: 15, Zeszyt: 15, Strony: 1-21
ISSN:  1996-1944
Opublikowano: Lipiec 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Justyna Stępień orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport6084.0070.00  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport4056.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

reclaimed cement concrete  reclaimed asphalt pavement  reclaimed aggregate  secondary setting  road base mixes  cold recycling  foamed bitumen 



Abstract:

The paper presents the results of exploratory research on the use of reclaimed cement concrete in cold-recycled mixes with foamed bitumen. Because reclaimed cement concrete, unlike natural aggregates, is expected to have a residue of the non-hydrated cement covering the aggregate grains, which may result in a secondary cementation process after its application in a road base, this avenue was explored by tracking the time evolution of the compressive strength of the final material. The tests were performed using two mixtures, i.e., a reference mixture and a mixture containing 25% reclaimed cement concrete. The mixtures containing reclaimed cement concrete were characterized by increased uniaxial compressive strengths after each curing period (3, 4, 7, 14 and 28 days)—by 11.5 kPa on average and e.g., 498 kPa vs. 506 kPa after 28 days. The obtained differences between the mixtures were not found to be statistically significant. The small effects of the incorporation of reclaimed cement concrete were attributed to the time passed typically between the demolition and new pavement construction and to the presence of a second binding material—bitumen.



B   I   B   L   I   O   G   R   A   F   I   A
1. Dołzycki, B. Polish Experience with Cold In-Place Recycling. In Proceedings of the IOP Conference Series: Materials Science
and Engineering, Prague, Czech Republic, 21–22 September 2017
Volume 236. https://doi.org/10.1088/1757-899X/236/1/012089.
2. Iwański, M.
Chomicz-Kowalska, A. Evaluation of the Pavement Performance. Bull. Polish Acad. Sci. Tech. Sci. 2015, 63, 97–105.
https://doi.org/10.1515/bpasts-2015-0011.
3. Chomicz-Kowalska, A.
Maciejewski, K. Performance and Viscoelastic Assessment of High-Recycle Rate Cold Foamed Bitumen
Mixtures Produced with Different Penetration Binders for Rehabilitation of Deteriorated Pavements. J. Clean. Prod. 2020, 258,
120517. https://doi.org/10.1016/j.jclepro.2020.120517.
Conflicts of Interest: The authors declare no conflict of interest.
B. Polish Experience with Cold In-Place Recycling. In Proceedings of the IOP Conference Series: Materials Science and
Engineering, Prague, Czech Republic, 21–22 September 2017
Volume 236. [CrossRef]
Iwa´ nski, [CrossRef]
[CrossRef]
4. Chomicz-Kowalska, A.
Maciejewski, K. Multivariate Optimization of Recycled Road Base Cold Mixtures with Foamed Bitumen.
Procedia Eng. 2015, 108, 436–444. [CrossRef]
5. Iwa´ nski, M.
Chomicz-Kowalska, A. Evaluation of the Effect of Using Foamed Bitumen and Bitumen Emulsion in Cold Recycling
Technology. In Proceedings of the 3rd International Conference on Transportation Infrastructure, Pisa, Italy, 22–25 April 2014
pp.
69–76.
6. Wirtgen Cold Recycling Technology. Manual, 1st ed.
Wirtgen GmbH:Windhagen, Germany, 2012.
7. Technical Guideline: Bitumen Stabilised Materials. A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen
Stabilized Materials
Asfalt Academy: Pretoria, South Africa, 2009
ISBN 978-0-7988-5582-2.
8. Vaitkus, A.
Vorobjovas, V. The Research on the Use of Warm Mix Asphalt for Asphalt Pavement Structures. In Proceedings of the
XXVII International Baltic Road Conference, Riga, Latvia, 23–26 August 2009
pp. 2–6.
9. Pasetto, M.
Baldo, N. Recycling of Waste Aggregate in Cement Bound Mixtures for Road Pavement Bases and Sub-Bases. Constr.
Build. Mater. 2016, 108, 112–118. [CrossRef]
10. Choi, S.
Yeon, J.H.
Won, M.C. Improvements of Curing Operations for Portland Cement Concrete Pavement. Constr. Build. Mater.
2012, 35, 597–604. [CrossRef]
11. Niazi, Y.
Jalili, M. Effect of Portland Cement and Lime Additives on Properties of Cold In-Place Recycled Mixtures with Asphalt
Emulsion. Constr. Build. Mater. 2009, 23, 1338–1343. [CrossRef]
12. Buczy´ nski, P.
Iwa´ nski, M. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base
Layers. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032042. [CrossRef]
13. Buczy´ nski, P.
Iwa´ nski, M. Fatigue Life Comparison of Recycled Cold Mixes with Foamed Bitumen and with Bitumen Emulsion.
Procedia Eng. 2017, 172, 135–142. [CrossRef]
Materials 2022, 15, 5175 20 of 21
14. Godenzoni, C.
Graziani, A.
Perraton, D. Road Materials and Pavement Design Complex Modulus Characterisation of Cold-
Recycled Mixtures with Foamed Bitumen and Different Contents of Reclaimed Asphalt Complex Modulus Characterisation of
Cold-Recycled Mixtures with Foamed Bitumen and Different Contents of Reclaimed Asphalt. Road Mater. Pavement Des. 2017, 18,
130–150. [CrossRef]
15. Swirydziuk, M. Recykling Odpadów Budowlanych (Recycling of Construction Waste). In˙zynier Budownictwa 2011, 12. Available
online: https://inzynierbudownictwa.pl/recykling-odpadow-budowlanych/ (accessed on 5 December 2011).
16. Nalewajko, M. Recycling of Construction Waste as One of the Aspects of Sustainable Construction. Ekon. I Sr. 2018, 1, 144–155.
17. Pedro, D.
De Brito, J.
Evangelista, L. Influence of the Use of Recycled Concrete Aggregates from Different Sources on Structural
Concrete. Constr. Build. Mater. 2014, 71, 141–151. [CrossRef]
18. Sabai, M.M.
Cox, M.G.D.M.
Mato, R.R.
Egmond, E.L.C.
Lichtenberg, J.J.N. Concrete Block Production from Construction and
Demolition Waste in Tanzania. Resour. Conserv. Recycl. 2013, 72, 9–19. [CrossRef]
19. Wagih, A.M.
El-Karmoty, H.Z.
Ebid, M.
Samir, H.O. Recycled Construction and Demolition ConcreteWaste as Aggregate for
Structural Concrete. HBRC J. 2019, 9, 193–200. [CrossRef]
20. Berntsen, G.
Petkovic, G. Evaluation of Unbound Crushed Concrete as Road Building Material—Mechanical Properties vs Field
Performance. Mater. Sci. 2009, 28, 30.
21. Edil, T.B.
James, M.T.
Craig, H.B. Recycled Unbound Materials. Research Project Final Report 2012-35, Minnesota Department of
Transportation, Research Services Section. Minnesota, 2012. Available online: https://www.lrrb.org/pdf/201235.pdf (accessed
on 30 November 2012).
22. Li, X. Recycling and Reuse ofWaste Concrete in China. Resour. Conserv. Recycl. 2008, 53, 36–44. [CrossRef]
23. Krezel, Z.A.
McManus, K. Recycled Aggregate Concrete Sound Barriers for Urban Freeways. Waste Manag. Ser. 2000, 1, 884–892.
[CrossRef]
24. Petkovic, G.
Engelsen, C.J.
Håøya, A.O.
Breedveld, G. Environmental Impact from the Use of Recycled Materials in Road
Construction: Method for Decision-Making in Norway. Resour. Conserv. Recycl. 2004, 42, 249–264. [CrossRef]
25. Poon, C.S.
Chan, D. Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Road Sub-Base. Constr.
Build. Mater. 2006, 20, 578–585. [CrossRef]
26. Polo-Mendoza, R.
Peñabaena-Niebles, R.
Giustozzi, F.
Martinez-Arguelles, G. Eco-Friendly Design of Warm Mix Asphalt
(WMA) with Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country. Constr. Build. Mater. 2022, 326,
126890. [CrossRef]
27. Sanchez-Cotte, E.H.
Fuentes, L.
Martinez-Arguelles, G.
Rondón Quintana, H.A.
Walubita, L.F.
Cantero-Durango, J.M. Influence
of Recycled Concrete Aggregates from Different Sources in Hot Mix Asphalt Design. Constr. Build. Mater. 2020, 259, 120427.
[CrossRef]
28. Vega-Araujo, D.
Martinez-Arguelles, G.
Santos, J. Comparative Life Cycle Assessment of Warm Mix Asphalt with Recycled
Concrete Aggregates: A Colombian Case Study. Procedia CIRP 2020, 90, 285–290. [CrossRef]
29. Araujo, D.L.V.
Santos, J.
Martinez-Arguelles, G. Environmental Performance Evaluation ofWarm Mix Asphalt with Recycled
Concrete Aggregate for Road Pavements. Int. J. Pavement Eng. 2022, 1–14. [CrossRef]
30. Deshpande, Y.S.
Hiller, J.E. Pore Characterization of Manufactured Aggregates: Recycled Concrete Aggregates and Lightweight
Aggregates. Mater. Struct. Constr. 2012, 45, 67–79. [CrossRef]
31. Gee, K.W. Use of Recycled Concrete Pavement as Aggregate in Hydraulic-Cement Concrete Pavement
Tech. Advis. T 5040.37
FHWA
Publication: McLean, VA, USA, 2007.
32. Paranavithana, S.
Mohajerani, A. Effects of Recycled Concrete Aggregates on Properties of Asphalt Concrete. Resour. Conserv.
Recycl. 2006, 48, 1–12. [CrossRef]
33. Sas,W.
Głuchowski, A. No´sno´s´c Podło˙za Drogowego z Destruktu Betonowego Na Przykładzie Bada´n CBR [Capacity of Road
Subbase from Recycled Concrete Aggregate Based on CBR Test Results]. Civ. Enviromental Eng. 2014, 5, 149–154.
34. Fengier, J.
Poz˙arycki, A. Self-Cementing Properties of Recycled Concrete Aggregates (RCA) on the Example of Tests of Material
and Layers of Pavement Subbase. Bud. I Archit. 2014, 13, 101–107. [CrossRef]
35. Sybilski, D.K.C. Ocena i Badania Wybranych Odpadów Przemysłowych Do Wykorzystania w Konstrukcjach Drogowych [Assessment and
Testing of Selected Industrial Waste for Use in Road Construction]
Road and Bridge Research Institute: Warsaw, Poland, 2004.
36. Wymagania Techniczne WT-4. Mieszanki Niezwia˛zane Do Dróg Krajowych [Technical Guidelines WT-4. Unbound Aggregate Mixtures for
National Roads]
Polish General Directorate for National Roads and Motorways: Warsaw, Poland, 2010.
37. Poon, C.S.
Qiao, X.C.
Chan, D. The Cause and Influence of Self-Cementing Properties of Fine Recycled Concrete Aggregates on
the Properties of Unbound Sub-Base. Waste Manag. 2006, 26, 1166–1172. [CrossRef]
38. EN 933-1
Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distributio—Sieving Method.
Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012.
39. Remišová, E.
Decký, M.
Mikolaš, M.
Hájek, M.
Kovalˇcík, L.
Meˇcár, M. Design of Road Pavement Using Recycled Aggregate.
IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016. [CrossRef]
40. Kruszywa Recyklingowe [Recycled Aggregates]. Available online: www.eko-zec.com.pl/?q=pl/node/122 (accessed on 1 April
2019).
41. Iwanski, M.M.
Chomicz-Kowalska, A.
MacIejewski, K. Impact of Additives on the Foamability of a Road Paving Bitumen. In
Proceedings of the IOP Conference Series: Materials Science and Engineering, Paris, France, 23–25 July 2019
Volume 603.
Materials 2022, 15, 5175 21 of 21
42. Chomicz-Kowalska, A.
Maciejewski, K.
Iwa´ nski, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and
Zeolites and Their Effects on the Properties ofWarm Mix Asphalt Concrete. Materials 2020, 13, 357. [CrossRef]
43. Chomicz-Kowalska, A.
Mrugała, J.
Maciejewski, K. Evaluation of Foaming Performance of Bitumen Modified with the Addition
of Surface Active Agent. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Birmingham, UK,
13–15 October 2017
Volume 245, p. 032086.
44. Iwa´ nski, M.
Chomicz-Kowalska, A.
Buczyn´ ski, P.
Mazurek, G.
Cholewin´ ska, M.
Iwan´ ski, M.M.
Ramia˛czek, P.
Maciejewski, K.
Procedury Projektowania Oraz Wytyczne Stosowania Materiałów Odpadowych i z Recyklingu Do Technologii Wytwarzania Mieszanek
Metoda˛Na Zimno z Asfaltem Spienionym MCAS [Procedures for Design and Recommendations for Utilizing Waste and Recycled Materials]

Kielce University of Technology: Kielce, Poland, 2018.
45. Ogólna Specyfikacja Techniczna: OST D-04.10.01a
Szczegółowa Specyfikacja Techniczna: Podbudowa z Mieszanki Mineralno-
Cementowej z Asfaltem Spienionym (MCAS)Wykonana w Technologii Recyklingu Gł˛ebokiego Na Zimno [Technical Specification:
Deep Cold Recycle]. Generalna Dyrekcja Dróg Krajowych i Autostrad [Polish General Directorate for National Roads and
Motorway]: Warsaw, Poland, 2013.
46. EN 13286-50
Unbound and Hydraulically Bound Mixtures—Part 50: Method for the Manufacture of Test Specimens of Hydraulically
Bound Mixtures Using Proctor Equipment or Vibrating Table Compaction. Comité Européen de Normalisation (CEN):
Brussels, Belgium, 2005.
47. EN 13286-41
Unbound and Hydraulically Bound Mixtures Part 41: Test Method for Determination of the Compressive Strength
of Hydraulically Bound Mixtures. Comité Européen de Normalisation (CEN): Brussels, Belgium, 2003.
48. Ramiaczek, P.
Chomicz-Kowalska, A.
Stepien, J.
Iwanski, M.M.
Maciejewski, K. Preliminary Assessment of the Secondary
Setting of Portland Cement in Recycled Crushed Concrete Incorporated in Cold Recycled Road Base Mixes with Foamed Bitumen.
IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 042076. [CrossRef]
49. Çolak, A. A New Model for the Estimation of Compressive Strength of Portland Cement Concrete. Cem. Concr. Res. 2006, 36,
1409–1413. [CrossRef]
50. Doyle, T.A.
McNally, C.
Gibney, A.
Tabakovi´c, A. Developing Maturity Methods for the Assessment of Cold-Mix Bituminous
Materials. Constr. Build. Mater. 2013, 38, 524–529. [CrossRef]
51. Otieno, M.N.
Kaluli, J.W.
Kabubo, C. Strength Prediction of Cold Asphalt Emulsion Mixtures Using the Maturity Method. J.
Mater. Civ. Eng. 2020, 32, 04020096. [CrossRef]