Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114950] Artykuł:

The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters.

Czasopismo: Materials   Tom: 15, Zeszyt: 12, Strony: 1-16
ISSN:  2053-1583
Opublikowano: Czerwiec 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Beata Potrzeszcz-Sut orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Agnieszka Dudzik orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


DOI LogoDOI    
Keywords:

parameter identification of material model  inverse analysis  indentation test  indentation curve  imprint profile  artificial neural networks 



Abstract:

The indentation test is a popular method for the investigation of the mechanical properties of materials. The technique, which combines traditional indentation tests with mapping the shape of the imprint, provides more data describing the material parameters. In this paper, such methodology is employed for estimating the selected material parameters described by Ramberg–Osgood’s law, i.e., Young’s modulus, the yield point, and the material hardening exponent. Two combined identification methods were used: the P-A procedure, in which the material parameters are identified on the basis of the coordinates of the indentation curves, and the P-C procedure, which uses the coordinates describing the imprint profile. The inverse problem was solved by neural networks. The results of numerical indentation tests—pairs of coordinates describing the indentation curves and imprint profiles—were used as input data for the networks. In order to reduce the size of the input vector, a simple and effective method of approximating the branches of the curves was proposed. In the results section, we show the performance of the approximation as a data reduction mechanism on a synthetic dataset. The sparse model generated by the presented approach is also shown to efficiently reconstruct the data while minimizing error in the prediction of the mentioned material parameters. Our approach appeared to consistently provide better performance on the testing datasets with considerably easier computation than the principal component analysis compression results available in the literature.