Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114930] Artykuł:

The Use of Acoustic Effects for the Prevention and Elimination of Fires as an Element of Modern Environmental Technologies

Czasopismo: Environmental and Climate Technologies   Tom: 26, Zeszyt: 1, Strony: 319-330
ISSN:  2255-8837
Opublikowano: Kwiecień 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Valentyna Loboichenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Jacek Wilk-Jakubowski orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne10100.00100.00  
Grzegorz Wilk-Jakubowski Niespoza "N" jednostkiNauki o zarządzaniu i jakości10.00.00  
Radosław Harabin Niespoza "N" jednostkiNauki o bezpieczeństwie10.00.00  
Roman Shevchenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Victor Strelets Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Alexander Levterov Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Alexander Soshinskiy Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Nataliia Tregub Niespoza "N" jednostkiInżynieria materiałowa10.00.00  
Oleksii Antoshkin Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Acoustics  Deep Neural Network  Environmental Technology  Fire  Pollution 



B   I   B   L   I   O   G   R   A   F   I   A
[1] Fagioli F. F., Paolotti L., Boggia A. Trends in Environmental Management Systems Research. A Content Analysis. Environmental and Climate Technologies 2022:26(1):46–63. https://doi.org/10.2478/rtuect-2022-0005
[2] Pięta P., et al. Multi-domain model for simulating smart IoT-based theme parks. Proc. SPIE (Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments) 2018:10808. https://doi.org/10.1117/12.2501659
[3] Chomać-Pierzecka E., et al. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022:15(2):669. https://doi.org/10.3390/en15020669
[4] Wilk-Jakubowski G. Wpływ technologii informatyczno-komunikacyjnych na funkcjonowanie współczesnych społeczeństw. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne (The influence of information and communication technologies on the functioning of modern societies. The role of computer science in economic and social sciences. Innovations and interdisciplinary implications.). Kielce: Publishing House of the University of Economics Bolesław Markowski in Kielce, 2011. (in Polish)
[5] Felis J., Kasprzyk S. Akustyczna metoda usuwania osadów pyłowych w kotłach energetycznych (Acoustic method of removing dust deposits in power boilers). Presented at XV National Scientific-Didactic Conference of Theory of Machines and Mechanisms, Białystok-Białowieża, Poland, 1996. (in Polish)
[6] Węsierski T., Wilczkowski S., Radomiak H. Wygaszanie procesu spalania przy pomocy fal akustycznych (Extinguishing the combustion process with acoustic waves.). Bezpieczeństwo i Technika Pożarnicza 2013:30(2):59–64. (in Polish)
[7] Wilczkowski S. Poszukiwanie nowych sposobów gaszenia pożarów (Searching for new ways to extinguish fires.). BiT Nauka i Technika Pożarnicza. Józefów: Wydawnictwo CNBOP-PIB, 1988. (in Polish)
[8] Shevchenko R. I., et al. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Proceedings 2021:SI1:169–174. https://doi.org/10.5510/OGP2021SI100519
[9] Wilk-Jakubowski J. Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques. Symmetry 2021:13(7):1299. https://doi.org/10.3390/sym13071299
[10] Wilczkowski S. Środki gaśnicze (Extinguishing media.). Kraków: Szkoła Aspirantów Państwowej Straży Pożarnej, 1995. (in Polish)
[11] Loboichenko V., et al. Comparative Analysis of the Influence of Various Dry Powder Fire Extinguishing Compositions on the Aquatic Environment. Water and Energy International 2019:62(7):63–68.
[12] Gurbanova M., et al. Effect of inorganic components of fire foaming agents on the aquatic environment. Journal of the Turkish Chemical Society, Section A: Chemistry 2020:7(3):833–844. https://doi.org/10.18596/jotcsa.785723
[13] Dadashov I., Loboichenko V., Kireev A. Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research 2018:37(1):63–77.
[14] Loboichenko V., et al. Review of the Environmental Characteristics of Fire Extinguishing Substances of Different Composition used for Fires Extinguishing of Various Classes. Journal of Engineering and Applied Sciences 2019:14(16):5925–5941. https://doi.org/10.36478/jeasci.2019.5925.5941
[15] Gurbanova М., et al. Comparative assessment of the ecological characteristics of auxiliary organic compounds in the composition of foaming agents used for firefighting. Bulletin of the Georgian National Academy of Sciences 2020:14(4):58–66.
[16] Dadashov I. F., et al. About the environmental characteristics of fire extinguishing substances used in extinguishing oil and petroleum products. SOCAR Proceedings 2020:1:79–84. https://doi.org/10.5510/OGP20200100426
[17] Lazaruk Y., Karabyn V. Shale gas in Western Ukraine: Perspectives, resources, environmental and technogenic risk of production. Pet Coal 2020:62(3):836–844.
[18] Rusyn I. B., et al. Biodegradation of oil hydrocarbons by Candida yeast. Mikrobiolohichnyi Zhurnal 2003:65(6):36–42.
[19] Siwik K. Dźwiękiem gaszą ogień. Niezwykły wynalazek Polaków (They put out the fire with a sound. An unusual invention of Poles) [Online]. [Accessed 02.06.2020]. Available: https://www.ckm.pl/m/lifestyle/dzwiekiem-gasza-ogien-niezwykly-wynalazek-polakow,23571,a.html (in Polish)
[20] Orkisz-Gola J. To może być przełom w pożarnictwie. Kielecki naukowiec zastąpił gaśnice... głośnikiem (This could be a breakthrough in firefighting. A scientist from Kielce replaced the fire extinguishers with ... a loudspeaker) [Online]. [Accessed 03.06.2020]. Available: https://kielce.tvp.pl/48364339/to-moze-byc-przelom-w-pozarnictwie-kielecki-naukowiec-zastapil-gasnice-glosnikiem (in Polish)
[21] Angora. Dźwiękowa gaśnica (Sound extinguisher) [Online]. [Accessed 21.06.2020]. Available: https://www.pressreader.com/poland/angora/20200621/ 282230897934076 (in Polish)
[22] Eska Rock. Polacy zgasili ogień dźwiękiem! Oto nowy wynalazek z Politechniki Świętokrzyskiej (Poles put out the fire with a sound! Here is a new invention from the Kielce University of Technology) [Online]. [Accessed 04.06.2020]. Available: https://www.eskarock.pl/rozrywka/polacy-zgasili-ogien-dzwiekiem-oto-nowy-wynalazek-z-politechniki-swietokrzyskiej-aa-gTin-qmqs-w2KD.html (in Polish)
[23] Poljskaja Nauka. Uchenij Keltskogo tehnologicheskogo universiteta razrabotal innovacionnij akusticheskih ognetushitelj (A scientist from the Kielce University of Technology has developed an innovative acoustic fire extinguisher) [Online]. [Accessed 08.06.2020]. Available: http://polishscience.pl/ru/ученый-кельцкого-технологического-у (in Russian)
[24] Krumov K. Ucheni ot Blgarija I Polsha sjzdadoha umen pozharogasitelj (Scientists from Bulgaria and Poland have created a smart fire extinguisher) [Online]. [Accessed 05.06.2020]. https://www.monitor.bg/bg/a/view/ucheni-ot -bylgarija-i- polsha-syzdadoha-umen-pojarogasitel-206283 (in Bulgarian)
[25] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. Control of acoustic extinguisher with Deep Neural Networks for fire detection. Elektronika ir Elektrotechnika 2022:28(1):52–59. https://doi.org/10.5755/j02.eie.24744
[26] Levterov A. Identification of a technogenic emergency on the acoustic radiation of a hazard zone. Municipal economy of cities 2019:5(151):100–106.
[27] Levterov A. Identification model development of the burning substance in the zone of the burning seat. Problems of Fire Safety 2019:45:92–97.
[28] Levterov A. A. Acoustic Research Method for Burning Flammable Substances. Acoustical Physics 2019:65(4):444–449. https://doi.org/10.1134/S1063771019040109
[29] Kalugin V. D., Levterov O. A., Tutiunik V. V. The method of early detection of the source of ignition. UA Patent 127254, 2018.
[30] Kalugin V. D., Levterov O. A., Tutiunik V. V. Method of extinguishing a fire. UA Patent 137790, 2019.
[31] Kordylewski W. Spalanie i paliwa (Burning and fuel). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2008. (in Polish)
[32] Niegodajew P., et al. Application of acoustic oscillations in quenching of gas burner flame. Combustion and Flame 2018:194:245–249. https://doi.org/10.1016/j.combustflame.2018.05.007
[33] Kowalewicz A. Podstawy procesów spalania (Basics of combustion processes.). Warsaw: Wydawnictwo Naukowo-Techniczne, 2000. (in Polish)
[34] Im H. G., Law C. K., Axelbaum R. L. Opening of the Burke-Schumann Flame Tip and the Effects of Curvature on Diffusion Flame Extinction. Proceedings of the Combustion Institute 1990:23(1):551–558. https://doi.org/10.1016/S0082-0784(06)80302-4
[35] Radomiak H., et al. Gaszenie płomienia dyfuzyjnego przy pomocy fal akustycznych (Diffusion flame extinguishing with acoustic waves.). Bezpieczeństwo i Technika Pożarnicza 2015:40(4):29–38. (in Polish) https://doi.org/10.12845/bitp.40.4.2015.2
[36] Roczniak M. Fizyka hałasu. Część I. Podstawy akustyki ośrodków gazowych (Noise physics. Part I. Fundamentals of acoustics of gas centers.). Gliwice: Wydawnictwo Politechniki Śląskiej, 1996. (in Polish)
[37] Vovchuk T. S., et al. Investigation of the use of the acoustic effect in extinguishing fires of oil and petroleum products. SOCAR Proceedings 2021:2:24–31. https://doi.org/10.5510/OGP2021SI200602
[38] Marek M. Wykorzystanie ekonometrycznego modelu klasycznej funkcji regresji liniowej do przeprowadzenia analiz ilościowych w naukach ekonomicznych. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne (The use of an econometric model of the classical linear regression function to carry out quantitative analyzes in economic sciences. The role of computer science in economic and social sciences. Innovations and interdisciplinary implications.). Kielce: Wydawnictwo Wyższej Szkoły Handlowej im. Bolesława Markowskiego w Kielcach, 2013. (in Polish)
[39] Marek M. Aspects of Road Safety: A Case of Education by Research –Analysis of Parameters Affecting Accident. Presented at The Education and Research in the Information Society Conference (ERIS), CEUR Workshop Proceedings 2021:3061:64–75. [Online]. [Accessed 12.02.2022] http://ceur-ws.org/Vol-3061/ERIS_2021-art07(reg).pdf
[40] Marek M. Bayesian regression model estimation: a road safety. Presented at The Sixth Smart City Applications International Conference (SCA 2021). Lecture Notes in Networks and Systems 2021:393. https://doi.org/10.1007/978-3- 030-94191-8_13
[41] Yılmaz-Atay H., Wilk-Jakubowski J. A Review of Novel Approach for the Fire Resistance of Chemical Materials: from Basic Science to Innovations. Polymers 2022:14(6):1224. https://doi.org/10.3390/polym14061224
[42] Chen L. W., Zhang Y. Experimental observation of the nonlinear coupling of flame flow and acoustic wave. Flow Measurement and Instrumentation 2015:46:12–17. https://doi.org/10.1016/j.flowmeasinst.2015.09.001
[43] Niegodajew P., et al. Application of acoustic oscillations in flame extinction in a presence of obstacle. Presented at XXIII Fluid Mechanics Conference (KKMP 2018). IOP Conf. Series Journal of Physics (Conf. Series 1101), 2018. https://doi.org/10.1088/1742-6596/1101/1/012023
[44] Defense Advanced Research Projects Agency. DARPA sound based fire extinguisher [Online]. [Accessed 16.07.2012]. Available: https://www.extremetech.com/extreme/132859-darpa-creates-sound-based-fire-extinguisher
[45] Stawczyk P., Wilk-Jakubowski J. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher. Open Engineering 2021:11(1):349–355. https://doi.org/10.1515/eng-2021-0037
[46] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 427999, 2019. (in Polish)
[47] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 428002, 2019. (in Polish)
[48] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (System for suppressing flames by acoustic waves). PL Small Patent (utility model) 70441, 2018. (in Polish)
[49] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 234266, 2019. (in Polish)
[50] Lippold A. Device and circuit for the generation of vortex rings. U. S. Patent 4735282, 1988.
[51] Thigpen H. D. Remote lighted wick extinguisher. U. S. Patent 5899685, 1999.
[52] Formigoni P. O. Process of extinction, expansion and controlling of fire flames thru acoustic. U. S. Patent 20100203460, 2010.
[53] Tran V., Robertson S. Methods and systems for disrupting phenomena with waves. U. S. Patent 10569115, 2020.
[54] Wilk-Jakubowski J., et al. The using of Deep Neural Networks and natural mechanisms of acoustic waves propagation for extinguishing flames. International Journal of Computational Vision and Robotics 2022:12(2):101–119. https://doi.org/10.1504/IJCVR.2021.10037050
[55] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. High-power acoustic fire extinguisher with artificial intelligence platform. International Journal of Computational Vision and Robotics 2022:12(3):236–249. https://doi.org/10.1504/IJCVR.2022.122580
[56] Karimi N. Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories. Energy 2014:78:490–500. https://doi.org/10.1016/j.energy.2014.10.036
[57] Magina N., et al. Spatio-temporal evolution of harmonic disturbances on laminar, non-premixed flames: Measurements and analysis. Combustion and Flame 2017:180:262–275. https://doi.org/10.1016/j.combustflame.2016.09.001
[58] Kashinath K., Waugh I. C., Juniper M. P. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. Journal of Fluid Mechanics 2014:761:399–430.
https://doi.org/10.1017/jfm.2014.601
[59] Kozlov V. V., et al. Combustion of hydrogen in round and plane microjets in transverse acoustic field at small Reynolds numbers as compared to propane combustion in the same conditions. International Journal of Hydrogen Energy 2016:41(44):20231–20239. https://doi.org/10.1016/j.ijhydene.2016.07.276
[60] Leśniak B., Wilczkowski S. Próby zastosowania fal akustycznych do hamowania procesów spalania (Attempts to use acoustic waves to inhibit combustion processes.). Józefów: Wydawnictwo CNBOP-PIB, 1988. (in Polish)
[61] Simon D. M., Wagner P. Characteristics of turbulent combustion by flame space and space heating. Journal of Industrial and Engineering Chemistry 1956:48(1):129–133. https://doi.org/10.1021/ie50553a038
[62] Im H. G., Law C. K., Axelbaum R. L. Opening of the burke-schumann flame tip and the effects of curvature on diffusion flame extinction. Symposium on Combustion 1991:23(1):551–558.
https://doi.org/10.1016/S0082-0784(06)80302-4
[63] Kornilov V. N., Schreel K., De Goey L. P. H. Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proceedings of the Combustion Institute 2007:31(1):1239–1246.
https://doi.org/10.1016/j.proci.2006.07.079
[64] Zambon A. C., Chelliah H. K. Acoustic-wave interactions with counterflow single- and twin-premixed flames: finite-rate kinetics, heat release and phase effects. Proceedings of the Combustion Institute 2007:31(1):1247–1255. https://doi.org/10.1016/j.proci.2006.07.156
[65] Lentati A. M., Chelliah H. K. Physical, thermal and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames. Symposium on Combustion 1998:27(2):2839–2846. https://doi.org/10.1016/S0082-0784(98)80142-2
[66] Blaszczyk J. Acoustically disturbed fuel droplet combustion. Fuel 1991:70(9):1023–1025.
https://doi.org/10.1016/0016-2361(91)90254-8
[67] Šerić L., Stipanicev D., Krstinić D. ML/AI in Intelligent Forest Fire Observer Network. Presented at International Conference on Management of Manufacturing Systems (Conference 3rd EAI 2018), Dubrovnik, Croatia, 2018. https://doi.org/10.4108/eai.6-11-2018.2279681
[68] Šerić L., Stipaničev D., Štula M. Observer network and forest fire detection. Information Fusion 2011:12(3):160–175. https://doi.org/10.1016/j.inffus.2009.12.003
[69] Wilk-Jakubowski G. Normative Dimension of Crisis Management System in the Third Republic of Poland in an International Context. Organizational and Economic Aspects. Łódź-Warszawa: Wydawnictwo Społecznej Akademii Nauk, 2019.
[70] Wilk-Jakubowski G., Harabin R., Ivanov S. Robotics in crisis management: a review. Technology in Society 2022:68:101935. https://doi.org/10.1016/j.techsoc.2022.101935
[71] Wilk-Jakubowski G., Harabin R., Wilk-Jakubowski J. Non-governmental organizations in crisis management: a review of the literature. Busko-Zdroj–Kielce, Poland, 2022 (unpublished).
[72] Eguchi S., et al. Multi-mode portable VSAT for disaster-resilient wireless networks. Presented at Asia Pacific Microwave Conference (APMC 2014), Sendai, Japan, 2014.
[73] Kameda S., et al. Development of satellite-terrestrial multi-mode VSAT using software defined radio technology. Presented at Asia Pacific Microwave Conference (APMC 2014), Sendai, Japan, 2014.
[74] Wilk-Jakubowski J. Information systems engineering using VSAT networks. Yugoslav Journal of Operations Research 2021:31(3):409–428.
https://doi.org/10.2298/YJOR2002
[75] Wilk-Jakubowski J. Overview of broadband information systems architecture for crisis management. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS (Informatics, Control, Measurement in Economy and Environmental Protection) 2020:10(2):20–23. https://doi.org/10.35784/iapgos.1608
[76] Sasanuma M., et al. Research and development of very small aperture terminals (VSAT) that can be installed by easy operation during disasters – Issues and the solutions for implementing simple and easy installation of VSAT earth station. Japan: The Institute of Electronics, Information and Communication Engineers (IEICE), 2013.
[77] Wilk-Jakubowski J. Measuring Rain Rates Exceeding the Polish Average by 0.01%. Pol. J. Environ. Stud. 2018:27(1):383–390. https://doi.org/10.15244/pjoes/73907
[78] Wilk-Jakubowski J. Predicting Satellite System Signal Degradation due to Rain in the Frequency Range of 1 to 25 GHz. Pol. J. Environ. Stud. 2018:27(1):391–396. https://doi.org/10.15244/pjoes/73906
[79] Wilk-Jakubowski J. Total Signal Degradation of Polish 26-50 GHz Satellite Systems Due to Rain. Pol. J. Environ. Stud. 2018:27(1):397–402. https://doi.org/10.15244/pjoes/75179
[80] Loboichenko V., et al. Assessment of the Impact of Natural and Anthropogenic Factors on the State of Water Objects in Urbanized and Non-Urbanized Areas in Lozova District (Ukraine). Ecological Engineering & Environmental Technology 2021:22(2):59–66. https://doi.org/10.12912/27197050/133333
[81] Ivanov S., et al. The using of Deep Neural Networks and acoustic waves modulated by triangular waveform for extinguishing fires. Presented at International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020), Technical University of Sofia, Sofia, Bulgaria, 2020. New Approaches for Multidimensional Signal Processing (‘Smart Innovation, Systems and Technologies’ series) 2021:216:207–218. https://doi.org/10.1007/978-981-33-4676-5_16
[82] Janků P., Komínková–Oplatková Z., Dulík T. Fire detection in video stream by using simple artificial neural network. Mendel 2018:24(2):55–60. https://doi.org/10.13164/mendel.2018.2.055
[83] Szegedy Ch., Toshev A., Erhan D. Deep Neural Networks for Object Detection. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) [Online]. [Accessed 10.03.2022]. Available: https://papers.nips.cc/paper/2013/hash/ f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html
[84] Foley D., O’Reilly R. An Evaluation of Convolutional Neural Network Models for Object Detection in Images on Low-End Devices. Proceedings for the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science [Online]. [Accessed 10.03.2022]. Available: http://ceur-ws.org/Vol-2259/aics_32.pdf
[85] Kurup R. Vision Based Fire Flame Detection System Using Optical flow Features and Artificial Neural Network. International Journal of Science and Research 2014:3(10):2161–2168.
[86] Zhang, X. Simple understanding of Mask RCNN [Online]. [Accessed 22.04.2018]. Available: https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
[87] Ivanov S., Stankov S. Acoustic Extinguishing of Flames Detected by Deep Neural Networks in Embedded Systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021:XLVI-4/W5-2021:307–312. https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-307-2021
[88] Ivanov S., Stankov S. The Artificial Intelligence Platform with the Use of DNN to Detect Flames: A Case of Acoustic Extinguisher. Lecture Notes in Networks and Systems 2022:371:24–34. https://doi.org/10.1007/978-3-030-93247-3_3
[89] Wilk-Jakubowski J., et al. Analysis of Environmentally Friendly Acoustic Firefighting and Fire Detection Systems on the Basis of Central and Eastern Europe Research Considering COVID-19 Times. Kielce-Gabrovo-Busko-Zdroj, Poland-Bulgaria, 2022 (unpublished).
[90] Sai R. T., Sharma G. Sonic Fire Extinguisher. Pramana Research Journal 2017:8:337–346.
[91] Tempest W. Infrasound and Low Frequency Vibration. London: Academic Press Inc., 1976.
[92] Noga A. Przegląd obecnego stanu wiedzy z zakresu techniki infradźwiękowej i możliwości wykorzystania fal akustycznych do oczyszczania urządzeń energetycznych (Review of the current state of knowledge in the field of infrasound technology and the possibility of using acoustic waves for cleaning energy devices.). Zeszyty Energetyczne 2014:1:225–234. (in Polish)