Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114690] Artykuł:

Effects of water-foaming and liquid warm mix additive on the properties and chemical composition of asphalt binders in terms of short term ageing process

(Wpłtw spieniania wodą i zastosowania płynnego środka WMA na właściwości i skład chemiczny lepiszczy asfaltowych w aspekcie starzenia krótkoterminowego)
Czasopismo: Construction and Building Materials   Tom: 341, Strony: 1-14
ISSN:  0950-0618
Opublikowano: Maj 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5077.7870.00  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport4062.2270.00  
Eva Remisova Niespoza "N" jednostki010.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Foamed bitumen  Liquid WMA additive  Fourier transform infrared spectroscopy  Dynamic shear rheometer  Multiple stress creep recovery  RTFOT 



Abstract:

This study investigated the effects of water-foaming of asphalt binders containing liquid warm mix additives as an intention to produce warm-mix asphalt with enhanced performance in scope of compaction and moisture resistance. Two paving grade bitumen were used as a base material – a 35/50 and 50/70 paving grade bitumen binders. The investigation involved subjecting the asphalt binders to short-term ageing using rolling thin-film oven test protocol in temperatures ranging from 123 ◦C to 163 ◦C to simulate the effects of lowered processing temperatures in warm mix asphalt techniques. The testing methods included standard classification tests, basic evaluation of foaming performance, dynamic viscosity testing, evaluation of high temperature stiffness and non-recoverable compliance using a dynamic shear rheometer as well as evaluation of changes in chemical composition of the binders using Fourier transform infrared spectroscopy. The results have shown that waterfoaming of asphalt binders incorporating the liquid warm mix additive led to an additional, significant drop in their dynamic viscosity in the mixing and compaction temperature range, while no significant effects to the performance-related characteristics of the binders were observed. It was found that the small changes in asphalt binder rheology caused by water-foaming were reverted in the course of laboratory short-term ageing. The process of water foaming has induced measurable changes in the chemical structure of the investigated binders associated traditionally with oxidative ageing, however these did not affect the results after the short-term laboratory ageing using the rolling thin-film oven test protocol. Based on the conducted work it was concluded that the simultaneous use of water-foaming and the liquid warm mix additive should not have permanent effects on the performance of the investigated asphalt binders, while enabling enhanced coating and workability of the asphalt mixtures produced in lowered temperatures.



B   I   B   L   I   O   G   R   A   F   I   A
1. Liphardt, A. Radziszewski, P. Król, J. Homogeneity and viscoelastic behaviour of bitumen film in asphalt mixtures containing rap. Materials (Basel). 2021, 14, doi:10.3390/ma14164355.
2. Bańkowski, W. Król, J. Gałązka, K. Liphardt, A. Horodecka, R. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356, doi:10.1088/1757-899X/356/1/012009.
3. Ma, Y. Polaczyk, P. Park, H. Jiang, X. Hu, W. Huang, B. Performance evaluation of temperature effect on hot in-place recycling asphalt mixtures. J. Clean. Prod. 2020, 277, 124093, doi:10.1016/j.jclepro.2020.124093.
4. Remišová, E. Decký, M. Mikolaš, M. Hájek, M. Kovalčík, L. Mečár, M. Design of Road Pavement Using Recycled Aggregate. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016, doi:10.1088/1755-1315/44/2/022016.
5. Skotnicki, Ł. Kuźniewsk, J. Szydło, A. Research on the properties of mineral–cement emulsion mixtures using recycled road pavement materials. Materials (Basel). 2021, 14, 1–23, doi:10.3390/ma14030563.
6. Raschia, S. Moghaddam, T.B. Perraton, D. Baaj, H. Carter, A. Graziani, A. Effect of RAP Source on Compactability and Behavior of Cold-Recycled Mixtures in the Small Strain Domain. J. Mater. Civ. Eng. 2021, 33, 04021030, doi:10.1061/(ASCE)MT.1943-5533.0003614.
7. Iwański, M. Chomicz-Kowalska, A. Evaluation of the effect of using foamed bitumen and bitumen emulsion in cold recycling technology. Sustain. Eco-Efficiency Conserv. Transp. Infrastruct. Asset Manag. - Proc. 3rd Int. Conf. Tranportation Infrastructure, ICTI 2014 2014, 69–76.
8. Iwański, M. Chomicz-Kowalska, A. Moisture and frost resistance of the recycled base rehabilitated with the foamed bitumen technology. Arch. Civ. Eng. 2012, 58, 185–198, doi:10.2478/v.10169-012-0011-2.
9. Pucułek, M. Liphardt, A. Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2020, doi:10.24425/ace.2020.136489.
10. Ozer, H. Al-Qadi, I. Harvey, J. Strategies for Improving the Sustainability of Asphalt Pavements. TechBrief 2016, 28p.
11. Rubio, M.C. Martínez, G. Baena, L. Moreno, F. Warm Mix Asphalt: An overview. J. Clean. Prod. 2012, 24, doi:10.1016/j.jclepro.2011.11.053.
12. Remišová, E. Holý, M. Changes of Properties of Bitumen Binders by Additives Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, doi:10.1088/1757-899X/245/3/032003.
13. Woszuk, A. Zofka, A. Bandura, L. Franus, W. Effect of zeolite properties on asphalt foaming. Constr. Build. Mater. 2017, 139, 247–255, doi:10.1016/j.conbuildmat.2017.02.054.
14. Chomicz-Kowalska, A. Maciejewski, K. Iwański, M.M. Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Polish Acad. Sci. Tech. Sci. 2021, doi:10.24425/bpasts.2021.136731.
15. Ghabchi, R. Singh, D. Zaman, M. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Mater. Pavement Des. 2015, 16, 334–357, doi:10.1080/14680629.2014.1000943.
16. Woszuk, A. Franus, W. A review of the application of zeolite materials in warm mix asphalt technologies. Appl. Sci. 2017, 7, doi:10.3390/APP7030293.
17. Woszuk, A. Panek, R. Madej, J. Zofka, A. Franus, W. Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Constr. Build. Mater. 2018, 183, 270–274, doi:10.1016/j.conbuildmat.2018.06.177.
18. Iwanski, M.M. Chomicz-Kowalska, A. Maciejewski, K. Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen. Materials (Basel). 2020, 13, doi:10.3390/ma13030654.
19. Bairgi, B.K. Mannan, U.A. Tarefder, R.A. Tribological Evaluation for an In-Depth Understanding of Improved Workability of Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 533–545, doi:10.1177/0361198119835510.
20. Chomicz-Kowalska, A. Maciejewski, K. Iwański, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials (Basel). 2020, doi:10.3390/ma13020357.
21. Yin, F. Arámbula-Mercado, E. Newcomb, D. Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties. Int. J. Pavement Eng. 2017, 18, 358–366, doi:10.1080/10298436.2015.1088151.
22. West, R. Rodezno, C. Julian, G. Prowell, B. Frank, B. Osborn, L, V. Kriech, T. Field Performance of Warm Mix Asphalt Technologies Washington DC, 2014
23. Cucalon, L. Martin, A. Arambula, E. Yin, F. Estakhri, C. Park, E. Epps, J. Moisture susceptibility of Warm-Mix Asphalt. In Asphalt Pavements CRC Press, 2014 pp. 691–700.
24. Garcia Cucalon, L. Kassem, E. Little, D.N. Masad, E. Fundamental evaluation of moisture damage in warm-mix asphalts. Road Mater. Pavement Des. 2017, 18, 258–283, doi:10.1080/14680629.2016.1266765.
25. Maciejewski, K. Ramiaczek, P. Remisova, E. Effects of short-term ageing temperature on conventional and high-temperature properties of paving-grade bitumen with anti-stripping and wma additives. Materials (Basel). 2021, 14, doi:10.3390/ma14216229.
26. Martinez-Arguelles, G. Giustozzi, F. Crispino, M. Flintsch, G.W. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 2014, 72, 423–433, doi:10.1016/j.conbuildmat.2014.09.024.
27. Yu, X. Wang, Y. Luo, Y. Impacts of water content on rheological properties and performance-related behaviors of foamed warm-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209, doi:10.1016/j.conbuildmat.2013.06.018.
28. Iwański, M. Mazurek, G. Buczyński, P. Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231, doi:10.1016/j.conbuildmat.2020.121231.
29. Hung, A.M. Goodwin, A. Fini, E.H. Effects of water exposure on bitumen surface microstructure. Constr. Build. Mater. 2017, 135, 682–688, doi:10.1016/j.conbuildmat.2017.01.002.
30. Huang, S.-C. Turner, F. Impact of water on aging. Fundamental properties of asphalts and modified asphalts Laramie, Western Research Institute, FHWA, 2015
31. Namutebi, M. Birgisson, B. Bagampadde, U. Foaming Effects on Binder Chemistry and Aggregate Coatability using Foamed Bitumen. Road Mater. Pavement Des. 2011, 12, 821–847, doi:10.1080/14680629.2011.9713896.
32. Maciejewski, K. Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials (Basel). 2021, 14, 2055, doi:10.3390/ma14082055.
33. Chomicz-Kowalska, A. A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests. Materials (Basel). 2021, 14, 6248, doi:10.3390/ma14216248.
34. Huang, B. Zhang, Y. Shu, X. Liu, Y. Penumadu, D. Ye, X.P. Neutron Scattering for Moisture Detection in Foamed Asphalt. J. Mater. Civ. Eng. 2013, 25, 932–938, doi:10.1061/(ASCE)MT.1943-5533.0000762.
35. Bairgi, B.K. Tarefder, R.A. Effect of Foaming Water Contents on High-Temperature Rheological Characteristics of Foamed Asphalt Binder. In Proceedings of the International Conference on Transportation and Development 2018
American Society of Civil Engineers: Reston, VA, 2018 pp. 243–251.
36. Bairgi, B.K. Mannan, U.A. Tarefder, R.A. Influence of foaming on tribological and rheological characteristics of foamed asphalt. Constr. Build. Mater. 2019, 205, 186–195, doi:10.1016/j.conbuildmat.2019.02.009.
37. Maciejewski, K. High temperature properties of paving grade bitumens for foamed warm-mix asphalt in terms of the used additives and laboratory short-term aging. PhD thesis (in Polish), Kielce University of Technology: Kielce, 2019.
38. Remišová, E. Zatkaliková, V. Schlosser, F. Study of Rheological Properties of Bituminous Binders in Middle and High Temperatures. Civ. Environ. Eng. 2016, 12, 13–20, doi:10.1515/cee-2016-0002.
39. Remišová, E. Zatkalíková, V. Evaluation of Bituminous Binder in Relation to Resistance to Permanent Deformation. Procedia Eng. 2016, 153, 584–589, doi:10.1016/j.proeng.2016.08.196.
40. Sakib, N. Hajj, R. Hure, R. Alomari, A. Bhasin, A. Examining the Relationship between Bitumen Polar Fractions, Rheological Performance Benchmarks, and Tensile Strength. J. Mater. Civ. Eng. 2020, 32, 04020143, doi:10.1061/(ASCE)MT.1943-5533.0003197.
41. Kaseer, F. Martin, A.E. Arámbula-Mercado, E. Relationship between Rheological Indices and Cracking Performance of Virgin, Recycled, and Rejuvenated Asphalt Binders and Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 93–109, doi:10.1177/03611981211007479.
42. Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. Circ. 2009, doi:10.17226/23002.
43. Chomicz-Kowalska, A. Mrugała, J. Maciejewski, K. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent. In Proceedings of the IOP Conference Series: Materials Science and Engineering
2017 Vol. 245, p. 032086.
44. Nouryon Rediset LQ Available online: https://www.nouryon.com/product/rediset-lq-1200/.
45. Prowell, B.D. Hurley, G.C. Warm-Mix Asphalt : Best Practices 3rd Edition 2007
46. Bairgi, B.K. Tarefder, R.A. Characterization of foaming attributes to binder tribology and rheology to better understand the mechanistic behavior of foamed asphalt. Int. J. Pavement Res. Technol. 2021, 14, 13–22, doi:10.1007/s42947-020-0283-x.
47. Iwański, M. Chomicz-Kowalska, A. Maciejewski, K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr. Build. Mater. 2015, 83, 62–69, doi:10.1016/j.conbuildmat.2015.02.060.
48. Iwański, M.M. Chomicz-Kowalska, A. Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials (Basel). 2019, 12, 3514, doi:10.3390/ma12213514.
49. Jenkins, K.J. Mix design considerations for cold and half-warm bituminous mixes with emphasis on foamed bitumen, University of Stellenbosch, 2000.
50. Newcomb, D.E. Arambula, E. Yin, F. Zhang, J. Bhasin, A. Li, W. Zelalem, A. Properties of foamed asphalt for warm mix asphalt applications. NCHRP Report 807 Washington DC, 2015
51. Infrared and raman spectroscopy: Methods and applications Schrader, B., Ed. VCH, 1995 Vol. 380 ISBN 3-527-26446-9.
52. Silverstein, R.M. Webster, F, X. Kiemle, D.J. Spectrometric Identification of Organic Compounds John Wiley & Sons: New York, 2005 ISBN 978-0-470-61637-6.
53. Mirwald, J. Werkovits, S. Camargo, I. Maschauer, D. Hofko, B. Grothe, H. Time and Storage Dependent Effects of Bitumen—Comparison of Surface and Bulk. RILEM Bookseries 2022, 27, 1853–1859, doi:10.1007/978-3-030-46455-4_235.
54. Mirwald, J. Nura, D. Hofko, B. Recommendations for handling bitumen prior to FTIR spectroscopy. Mater. Struct. 2022, 55, 26, doi:10.1617/s11527-022-01884-1.
55. Hofko, B. Alavi, M.Z. Grothe, H. Jones, D. Harvey, J. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater. Struct. Constr. 2017, 50, doi:10.1617/s11527-017-1059-x.
56. Hofko, B. Porot, L. Falchetto Cannone, A. Poulikakos, L. Huber, L. Lu, X. Mollenhauer, K. Grothe, H. FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater. Struct. 2018, 51, 45, doi:10.1617/s11527-018-1170-7.
57. Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 2001, 80, 483–488, doi:10.1016/S0016-2361(00)00121-6.
58. Yut, I. Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117, doi:10.1016/j.conbuildmat.2014.03.043.
59. Yin, F. Arámbula-Mercado, E. Newcomb, D. Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties. Int. J. Pavement Eng. 2017, 18, 358–366, doi:10.1080/10298436.2015.1088151.