Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[113110] Artykuł:

Three Methods in Reliability Assessment of Engineering Structure

(Trzy metody oceny niezawodności konstrukcji inżynierskiej)
Czasopismo: International Journal of Engineering and Advanced Technology (IJEAT)   Tom: 11, Zeszyt: 3, Strony: 114-118
ISSN:  2249-8958
Opublikowano: Luty 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Beata Potrzeszcz-Sut orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5010.0010.00  
Agnieszka Dudzik orcid logo WBiAKatedra Teorii Konstrukcji i BIMTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5010.0010.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Reliability  Neural Networks  Limit State Function  Form Method  Hybrid Monte Carlo Method 



Abstract:

The work attempts to choose the handy methods for analyzing structural reliability. Comparative analysis of the methods was performed on an example of dome truss susceptible to stability loss from the condition of node snapping. In the reliability analysis of structure the load magnitudes (P), the axial stiffness of bars (EA), coordinate nodes (Z) are represented by random variables. The criterion of structural failure is expressed by the condition of non-exceeding the admissible load multiplier. The Hasofer-Lind reliability index was determined. In analysis were used three approaches differing way of defining the limit state function: Approach 1 – using of implicit limit state function, Approach 2 – using of explicit neural state functions, Approach 3 – using of the Hybrid Monte Carlo method.



B   I   B   L   I   O   G   R   A   F   I   A
1. H. O. Madsen and N. C. Krenk, Methods of Structural Safety.
Englewood Cliffs, USA: Prentice Hall, 1986.
2. R. E. Melchers, Structural Reliability Analysis and Predictions, 2nd
wyd. J. Wiley & Sons, 1996.
3. O. Ditlevsen and H. Madsen, Structural Reliability Methods.
Chichester, UK,: J. Wiley & Sons, 1996.
4. P. Thoft-Christensen and M. J. Baker, Structural Reliability. Theory and
its Applications. Springer-Verlag, 1982.
5. G. Augusti, A. Baratta, and F. Casciati, Probabilistic Methods in
Structural Engineering. Chapman and Hall, 1984.
6. M. E. Harr, Reliability-Based Design in Civil Engineering. New York,
USA: Dover Publications Inc., 2000.
7. A. Nowak and K. Collins, Reliability of Structures. New York: CRC
Press, 2 edition, 2013.
8. K. Winkelmann and J. Górski, “The use of response surface
methodology for reliability estimation of composite engineering
structures”, Journal of Theoretical and Applied Mechanics, vol. 52, no.
4, pp. 1019–1032, 2014, doi: DOI:
https://doi.org/10.15632/jtam-pl.52.4.1019.
9. A. Dudzik and U. Radoń, “The reliability assessment for steel industrial
building”, Advances In Mechanics: Theoretical, Computational And
Interdisciplinary Issues, pp. 163–166, 2016.
10. A. Dudzik and B. Potrzeszcz-Sut, “Hybrid Approach to the First Order
Reliability Method in the Reliability Analysis of a Spatial Structure”,
APPLIED SCIENCES-BASEL, vol. 11, no. 2, pp. 648, 2021, doi:
10.3390/app11020648.
11. A. Dudzik and B. Potrzeszcz-Sut, “The structural reliability analysis
using explicit neural state functions”, w MATEC Web of Conferences,
Krynica, 2018, vol. 262. doi: 10.1051/matecconf/201926210002.
12. M. Grubišić, J. Ivošević, and A. Grubišić, “Reliability Analysis of
Reinforced Concrete Frame by Finite Element Method with Implicit
Limit State Functions”, Buildings, vol. 9, no. 5, pp. 119, 2019, doi:
doi.org/10.3390/buildings9050119.
13. U. Radoń, W. Szaniec, and P. Zabojszcza, “Probabilistic Approach to
Limit States of a Steel Dome.”, Materials, vol. 14, no. 19, pp. 5528,
2021, doi: 10.3390/ma14195528.
14. L. You, J. Zhang, Q. Li, and N. Ye, “Structural reliability analysis based
on fuzzy random uncertainty”, Eksploatacja i Niezawodnosc –
Maintenance and Reliability, vol. 21, no. 4, pp. 599–609, 2019, doi:
10.17531/ein.2019.4.9.
15. S. Gollwitzer, B. Kirchgäßner, R. Fischer, and R. Rackwitz,
“PERMAS-RA/STRUREL system of programs for probabilistic
reliability analysis. Structural Safety”, Structural Safety, vol. 28, no.
1–2, pp. 108–129, 2006.
16. G. I. Schuëller and H. J. Pradlwarter, “Computational stochastic
structural analysis (COSSAN) – a software tool. Structural Safety”,
Structural Safety, vol. 28, no. 1–2, pp. 68–82, 2006.
17. P. Kowalczyk, “NUMPRESS − integrated computer system for analysis
and optimization of industrial sheet metal forming processes”, Hutnik,
Wiadomości Hutnicze, vol. 81, no. 1, pp. 55–63, 2014.
18. U. Radoń, “Application method FORM in reliability analysis of node
snapping truss structures“ - in Polish, Kielce, 2012.
19. K. Doliński, Importance Sampling Techniques in Reliability
Calculation, vol. 37. Warszawa: IPPT PAN, 1988.
20. C. Bucher, “Adaptive sampling—an iterative fast Monte Carlo
procedure”, Structural Safety, vol. 5, no. 2, pp. 119–126, 1988.
21. M. Keramat and R. Kielbasa, “Latin Hypercube Sampling Monte Carlo
Estimation of Average Quality Index for Integrated Circuits”, Analog
Integrated Circuits And Signal Processing, vol. 14, no. 1/2, pp. 131–142,
1997.
22. F. Grooteman, “An Adaptive Directional Importance Sampling method
for structural reliability”, National Aerospace Laboratory NLR,
Amsterdam, NLR-TP-2011-354, 2011.
23. A. Carpentier and R. Munos, “Adaptive Stratified Sampling for
Monte-Carlo integration of Differentiable functions”, NIPS 2012
conference proceedings, vol. 1, 2012.
24. J. E. Pulido, T. L. Jacobs, and E. C. Praters de Lima, “Structural
reliability using Monte Carlo simulation with variance reduction
techniques on elastic-plastic structures”, Computers & Structures, vol.
43, pp. 419–430, 1992.
25. J. Hurtado and D. Alvarez, “Reliability assessment of structural systems
using neural networks”, European Congress on Computational Methods
in Applied Sciences and Engineering, Barcelona, 2000.
26. J. Kaliszuk, “Hybrid Monte Carlo method in the reliability analysis of
structures”, Computer Assisted Mechanics and Engineering Sciences,
vol. 18, pp. 205–216, 2011.
27. E. Pabisek, J. Kaliszuk, and Z. Waszczyszyn, “Neural and finite element
analysis of a plane steel frame reliability by the Classical Monte Carlo
method”, Artificial Intelligence and Soft Computing - ICAISC 2004, 7th
International Conference, Zakopane, 1081-1086, 2004.
28. MathWorks, MATLAB® Primer. The MathWorks. Inc, 1984.