Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[112210] Artykuł:

Active Control of Stiffness of Tensegrity Plate-like Structures Built with Simplex Modules

(Aktywna kontrola sztywności płyt tensegrity zbudowanych z modułu Simplex)
Czasopismo: Materials   Tom: 14, Zeszyt: 24, Strony: 7888
ISSN:  1996-1944
Opublikowano: 2021
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Justyna Tomasik orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport5070.00.00  
Paulina Obara orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

tensegrity plate-like structures  Simplex module  self-stress state  infinitesimal mechanism  qualitative analysis  non-linear quantitative analysis 



Abstract:

The aim of this study is to prove that it is possible to control the static behavior of tensegrity plate-like structures. This possibility is very important, particularly in the case of deployable structures. Here, we analyze the impact the support conditions of the structure have on the existence of specific characteristics, such as self-stress states and infinitesimal mechanisms, and, consequently, on the active control. Plates built with Simplex modules are considered. Firstly, the presence of the specific characteristics is examined, and a classification is carried out. Next, the influence of the level of self-stress state on the behavior of structures is analyzed. A geometrically non-linear model, implemented in an original program, written in the Mathematica environment, is used. The results confirm the feasibility of the active control of stiffness of tensegrity plate-like structures characterized by the presence of infinitesimal mechanisms. In the case when mechanisms do not exist, structures are insensitive to the initial prestress level. It is possible to control the occurrence of mechanisms by changing the support conditions of the structure. Based on the obtained results, tensegrity is very promising structural concept, applicable in many areas, when conventional solutions are insufficient.



B   I   B   L   I   O   G   R   A   F   I   A
1. Khunsaraki, G.M., Oscuii, H.N., Voloshin, A. Study of the Mechanical Behavior of Subcellular Organelles Using a 3D Finite Element Model of the Tensegrity Structure. Appl. Sci. 2021, 11, 249. https://doi.org/10.3390/app11010249.
2. Voloshin, A. Migration of the 3T3 Cell with a Lamellipodium on Various Stiffness Substrates—Tensegrity Model. Appl. Sci. 2020, 10, 6644. https://doi.org/10.3390/app10196644.
3. Chai Lian, O., Kok Keong, C., Nishimura, T., Jae-Yeol, K. Form-Finding of Spine Inspired Biotensegrity Model. Appl. Sci. 2020, 10, 6344. https://doi.org/10.3390/app10186344.
4. Jung, E., Ly, V., Cheney, C., Cessna, N., Ngo, M.L., Castro, D., Teodorescu, M. Design, Construction and Validation of a Proof of Concept Flexible–Rigid Mechanism Emulating Human Leg Behavior. Appl. Sci. 2021, 11, 9351. https://doi.org/10.3390/app11199351.
5. Dong, Y., Ding, J., Wang, C., Liu, X. Kinematics Analysis and Optimization of a 3-DOF Planar Tensegrity Manipulator under Workspace Constraint. Machines 2021, 9, 256. https://doi.org/10.3390/machines9110256.
6. Wang, T., Post, M.A. A Symmetric Three Degree of Freedom Tensegrity Mechanism with Dual Operation Modes for Robot Actuation. Biomimetics 2021, 6, 30. https://doi.org/10.3390/biomimetics6020030.
7. Al Sabouni-Zawadzka, A., Gilewski, W. Smart Metamaterial Based on the Simplex Tensegrity Pattern. Materials 2018, 11, 673. https://doi.org/10.3390/ma11050673.
8. Al Sabouni-Zawadzka, A., Gilewski, W. Soft and Stiff Simplex Tensegrity Lattices as Extreme Smart Metamaterials. Materials 2019, 12, 187. https://doi.org/10.3390/ma12010187.
9. Al Sabouni-Zawadzka, A., Gilewski, W. Extreme Mechanical Properties of Regular Tensegrity Unit Cells in 3D Lattice Metamaterials. Materials 2020, 13, 4845. https://doi.org/10.3390/ma1321484.
10. Vangelatos, Z., Micheletti, A., Grigoropoulos, C.P., Fraternali, F. Design and Testing of Bistable Lattices with Tensegrity Ar-chitecture and Nanoscale Features Fabricated by Multiphoton Lithography. Nanomaterials 2020, 10, 652. https://doi.org/10.3390/nano10040652.
11. Zhang, Q., Wang, X., Cai, J., Zhang, J., Feng, J. Closed-Form Solutions for the Form-Finding of Regular Tensegrity Structures by Group Elements. Symmetry 2020, 12, 374. https://doi.org/10.3390/sym12030374.
12. Wang, K., Cai, J., Sang-hoon Lee, D., Xu, Y., Feng, J. Numerical Form-Finding of Multi-Order Tensegrity Structures by Grouping Elements. Steel Compos. Struct. 2021, 41, 267–277.
13. Zhang, Q., Wang, X., Cai, J., Yang, R., Feng, J. Prestress Design for Cable-Strut Structures by Grouping Elements. Eng. Struct. 2021, 244, 112010. https://doi.org/10.1016/j.engstruct.2021.112010.
14. Wang, Y., Xian, X., Luo, Y. Form-Finding of Tensegrity Structures via Rank Minimization of Force Density Matrix. Eng. Struct. 2021, 227, 111419. https://doi.org/10.1016/j.engstruct.2020.111419.
15. Zhang, P., Zhou, J., Chen, J. Form-Finding of Complex Tensegrity Structures Using Constrained Optimization Method. Compos. Struct. 2021, 268, 113971. https://doi.org/10.1016/j.compstruct.2021.113971.
16. Rhode-Barbarigos, L., Ali, N.B.H., Motro, R., Smith, I.F.C. Design Aspects of a Deployable Tensegrity-Hollow-Rope Footbridge. Int. J. Space Struct. 2012, 27, 81–95. https://doi.org/10.1260/0266-3511.27.2-3.81.
17. Rhode-Barbarigos, L., Motro, R., Smith, I.F.C. A Transformable Tensegrity-Ring Footbridge. In Proceedings of the First Con-ference Transformables 2013, Seville, Spain, 18–20 September 2013, Escrig, F., Sanchez, J., Eds.
18. Sultan, C. Tensegrity Deployment Using Infinitesimal Mechanisms. Int. J. Solids Struct. 2014, 51, 3653–3668.
19. Smaili, A., Motro, R. Foldable/unfoldable curved tensegrity systems by finite mechanism activation. J. Int. Assoc. Shell Spat. Struct. 2007, 48, 153–160.
20. Sultan, C., Skelton, R. Deployment of Tensegrity Structures. Int. J. Solids Struct. 2003, 40, 4637–4657. https://doi.org/10.1016/S0020-7683(03)00267-1.
21. Moored, K.W., Bart-Smith, H. Investigation of Clustered Actuation in Tensegrity Structures. Int. J. Solids Struct. 2009, 46, 3272–3281. https://doi.org/10.1016/j.ijsolstr.2009.04.026.
22. Fest, E., Shea, K., Domer, B., Smith, I.F.C. Adjustable Tensegrity Structures. J. Struct. Eng. 2003, 129, 515–526. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(515).
23. Fest, E., Shea, K., Smith, I.F.C. Active Tensegrity Structure. J. Struct. Eng. 2004, 130, 1454–1465. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1454).
24. Gilewski, W., Al Sabouni-Zawadzka, A. On Possible Applications of Smart Structures Controlled by Self-Stress. Arch. Civ. Mech. 2014, 15, 469–478. https://doi.org/10.1016/j.acme.2014.08.006.
25. Emmerich, D.G. Construction de Reseaux Autotendants. French Patent 1,377,290, 28 September 1964.
26. Fuller, R.B. Tensile-Integrity Structures. U.S. Patent 3,063,521, 13 November 1962.
27. Snelson, K. Continuous Tension, Discontinuous Compression Structures. U.S. Patent 3,169,611, 16 February 1965.
28. Kono, Y., Kunieda, H. Tensegrity grids transformed from double-layer space grids. In Proceedings of the Conceptual Design of Structures, Proceedings of the International Symposium, Stuttgart, Germany, 7–11 October 1966, pp. 293–300.
29. Gómez-Jáuregui, V., Arias, R., Otero, C., Manchado, C. Novel Technique for Obtaining Double-Layer Tensegrity Grids. Int. J. Space Struct. 2012, 27, 155–166. https://doi.org/10.1260/0266-3511.27.2-3.155.
30. Skelton, R.E., Oliveira, M.C. Optimal Complexity of Deployable Compressive Structures. J. Frankl. Inst. 2010, 1, 228–256. https://doi.org/10.1016/j.jfranklin.2009.10.010.
31. Olejnikova, T. Double Layer Tensegrity Grids. Acta Polytech. Hung. 2012, 9, 95–106.
32. Małyszko, L., Rutkiewicz, A. Response of a Tensegrity Simplex in Experimental Tests of a Modal Hammer at Different Self-Stress Levels. Appl. Sci. 2020, 10, 8733. https://doi.org/10.3390/app10238733.
33. Hanaor, A., Liao, M.-K. Double-Layer Tensegrity Grids: Static Load Response. Part I: Analytical Study. J. Struct. Eng. 1991, 117, 1660–1674.
34. Hanaor, A. Double-Layer Tensegrity Grids: Static Load Response. Part II: Experimental Study. J. Struct. Eng. 1991, 117, 1675–1684.
35. Murakami, H. Static and dynamic analyses of tensegrity structures. Part 1. Non-linear equations of motion. Int. J. Solids Struct. 2001, 38, 3599–3613.
36. Murakami, H. Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int. J. Solids Struct. 2001, 38, 3615–3629.
37. Fu, F. Non-linear static analysis and design of Tensegrity domes. Steel Compos. Struct. 2006, 6, 417–433.
38. Angellier, N., Dubé, J.F., Quirant, J., Crosnier, B. Behavior of a Double-Layer Tensegrity Grid under Static Loading: Identification of Self-Stress Level. J. Struct. Eng. 2013, 139, 1075–1081.
39. Gilewski, W., Obara, P., Kłosowska, J. Self-stress control of real civil engineering tensegrity structures. AIP Conf. Proc. 2018, 1922, 150004.
40. Gilewski, W., Kłosowska, J., Obara, P. The influence of self-stress on the behavior of tensegrity-like real structure. MATEC Web Conf. 2017, 117, 79.
41. Gilewski, W., Kłosowska, J., Obara, P. Parametric analysis of some tensegrity structures. MATEC Web Conf. 2019, 262, 10003.
42. Obara, P., Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 2—Quantitative Analysis. Appl. Sci. 2021, 11, 602. https://doi.org/10.3390/app11020602.
43. Bathe, K.J. Finite Element Procedures in Engineering Analysis, Prentice Hall: New York, NY, USA, 1996.
44. Zienkiewicz, O.C., Taylor, R.L. The Finite Element Method: The Basis, Elsevier Butterworth-Heinemann: London, UK, 2000, Volume 1.
45. Obara, P., Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis. Appl. Sci. 2020, 10, 7042. https://doi.org/10.3390/app10207042.
46. Pellegrino, S., Calladine, C.R. Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 1986, 22, 409–428.
47. Alajarmeh, O., Manalo, A., Benmokrane, B., Karunasena, W., Ferdous, W., Mendis, P. A New Design-Oriented Model of Glass Fiber-Reinforced Polymer-Reinforced Hollow Concrete Columns. ACI Mater. J. 2020, 117, 141–156. https://doi.org/10.14359/51720204.
48. Al-Fakher, U., Manalo, A., Ferdous, W., Aravinthan, T., Zhuge, Y., Bai, Y., Edoo, A. Bending Behaviour of Precast Concrete Slab with Externally Flanged Hollow FRP Tubes. Eng. Struct. 2021, 241, 112433. https://doi.org/10.1016/j.engstruct.2021.112433.