Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[111650] Artykuł:

Towards a Renewable Energy Source Cadastre—A Review of Examples from around the World

Czasopismo: Energies   Tom: 14, Zeszyt: 23
ISSN:  1996-1073
Opublikowano: Grudzień 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Bieda Niespoza "N" jednostki50.00.00  
Agnieszka Cienciała orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka50140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

biomasa  kataster  bazy danych  potencjał energetyczny  zielona energia  geoportal  geotermia  energia wodna  mapa  odnawialne źródła energii  słońce  energia cieplna  woda  wiatr 


Keywords:

biomass  cadastre  database  energy potential  green energy  geoportal  geothermal  hydropower  map  renewable energy sources  solar  sun  waste heat  water  wind 



Streszczenie:

W dobie nadciągającego kryzysu klimatycznego i kolejnych prognozowanych katastrof ekologicznych, ludzkość z coraz większym zainteresowaniem myśli o zastąpieniu istniejących źródeł energii źródłami odnawialnymi. Coraz więcej osób inicjuje dyskusję o potrzebie wprowadzenia rejestrów gromadzących informacje o potencjale energetycznym poszczególnych elementów środowiska, w którym żyjemy. Dodatkowo pożądana jest jednoczesna rejestracja instalacji służących do pozyskiwania energii z alternatywnych źródeł. Takie bazy danych, oprócz atrybutów ilościowych, powinny zawierać również kompleksową informację przestrzenną. Ponieważ w dobie globalizacji tworzenie takich baz danych powinno być zestandaryzowane, celem niniejszego opracowania jest wskazanie kierunków rozwoju katastru odnawialnych źródeł energii poprzez: (i) przegląd rozwiązań dotyczących odnawialnych źródeł energii, które zostały opisane w literaturze naukowej; (ii) analizę zawartości wybranych geoportali zawierających dane o odnawialnych źródłach energii. Przegląd literatury został poprzedzony szczegółową analizą biometryczną, natomiast analiza zawartości geoportali doprowadziła do stworzenia schematu blokowego zawierającego propozycję katastru odnawialnych źródeł energii oraz rankingu analizowanych portali. Niemniej jednak, prace koncepcyjne ograniczono jedynie do katastru solarnego.




Abstract:

In the age of the impending climate crisis, and further forecast ecological catastrophes, humankind has begun to think with growing interest about replacing existing energy sources with renewable ones. An increasing number of people have begun to discuss the need to implement registries that collect information about the energy potential of specific parts of the environment we live in. Additionally, the simultaneous registration of installations used for obtaining energy from alternative sources is desirable. In addition to quantitative attributes, such databases should also contain comprehensive spatial information. Since, in the era of globalization, the creation of such databases ought to be standardized, the purpose of this study is to indicate the directions in which the cadastre of renewable energy sources should be developed by: (i) reviewing the solutions of renewable energy sources that have been described in the scientific literature; (ii) analyzing the content of selected geoportals containing data on renewable energy sources. The literature review was preceded by a detailed bio-metric analysis, whereas the content analysis of the geoportals led to the creation of a flow chart containing a proposal for a renewable energy source cadastre, and a ranking of the analyzed portals. Nevertheless, the conceptual work was limited to the solar cadastre only.



B   I   B   L   I   O   G   R   A   F   I   A
European Commission—2020 Climate & Energy Package. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2020-climate-energy-package_en (accessed on 15 October 2021).

European Commission—2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 15 October 2021).

Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 15 October 2021).
Szalontai, L. The establishment and significance of district/regional roof cadastres in the utilization of solar Energy. Acta Univ. Sapientiae Agric. Environ. 2014, 6, 45–51. [Google Scholar] [CrossRef]

Boemi, S.N.
Papadopoulos, A.M.
Karagiannidis, A.
Kontogianni, S. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece. Waste Manag. Res. 2010, 28, 967–976. [Google Scholar] [CrossRef] [PubMed]

Bofu, C.
Craciun, I.
Giurma-Handley, C.R.
Antonescu, I.
Telisca, M.
Boariu, C.
Alecu, I. Correlation between green energy cadastre and environmental monitoring. J. Environ. Prot. Ecol. 2014, 15, 1751–1758. [Google Scholar]

Navarra, D.
van der Molen, P. A global perspective on cadastres & GEO-ICT for sustainable urban governance in view of climate change. Archit. City Environ. 2014, 24, 59–71. [Google Scholar] [CrossRef]

Wate, P.
Coors, V. 3D data models for urban energy simulation. Energy Procedia 2015, 78, 3372–3377. [Google Scholar] [CrossRef]

Seifert, M.
Gruber, U.
Riecken, J. Germany on the way to 4D-cadastre. In Cadastre: Geo-Information Innovations in Land Administration
Yomralioglu, T., McLaughlin, J., Eds.
Springer: Cham, Switzerland, 2017
pp. 147–158. [Google Scholar] [CrossRef]

Kerimov, I.A.
Debiew, M.V. Green energy as a factor of sustainable development of Chechen Republic. Sustain. Dev. Mt. Territ. 2018, 10, 235–245. [Google Scholar] [CrossRef]

Valjarević, A.
Valjarević, D.
Filipović, D.
Dragojlović, J.
Milosavljević, S.
Milanović, M. One small municipality and future of renewable energy strategy. Pol. J. Environ. Stud. 2020, 30, 1–9. [Google Scholar] [CrossRef]

Web of Science Core Collection. Available online: https://www.webofscience.com (accessed on 1 October 2021).

Scopus. Available online: https://www.scopus.com (accessed on 1 October 2021).

Akbari, M.
Khodayari, M.
Danesh, M.
Davari, A.
Padash, H. A bibliometric study of sustainable technology research. Cogent Bus. Manag. 2020, 7, 1751906. [Google Scholar] [CrossRef]

Obileke, K.C.
Onyeaka, H.
Omoregbe, O.
Makaka, G.
Nwokolo, N.
Mukumba, P. Bioenergy from bio-waste: A bibliometric analysis of the trend in scientific research from 1998–2018. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]

Esfahani, A.N.
Moghaddam, N.B.
Maleki, A.
Nazemi, A. The knowledge map of energy security. Energy Rep. 2021, 7, 3570–3589. [Google Scholar] [CrossRef]

Rosokhata, A.
Minchenko, M.
Khomenko, L.
Chygryn, O. Renewable energy: A bibliometric analysis. E3S Web Conf. 2021, 250, 03002. [Google Scholar] [CrossRef]

Hidalgo, D.B.
Borges, R.J.
Nodal, Y.V. Applications of solar energy: History, sociology and last trends in investigation. Producción+ Limpia 2018, 13, 21–28. [Google Scholar] [CrossRef]

Knapczyk, A.
Francik, S.
Fraczek, J.
Slipek, Z. Analysis of research trends in production of solid biofuels. Eng. Rural. Dev. 2019, 18, 1503–1509. [Google Scholar] [CrossRef]

Mikheev, A.V. Technological forecasting related to the energy sector: A scientometric overview. E3S Web Conf. 2020, 209, 02022. [Google Scholar] [CrossRef]

Ramnath, G.S.
Harikrishnan, R. Households Electricity Consumption Analysis: A Bibliometric Approach. Libr. Philos. Pract. 2021, 3, 9190. [Google Scholar]

Van Eck, N.J.
Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]

Martinho, V.J.P.D. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Rev. 2018, 22, 396–409. [Google Scholar] [CrossRef]

Google. Available online: https://www.google.com (accessed on 1 October 2021).

Cabeza, L.F.
Chàfer, M.
Mata, É. Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings. Energies 2020, 13, 409. [Google Scholar] [CrossRef]

Mainzer, K.
Fath, K.
Mckenna, R.
Stengel, J.
Fichtner, W.
Schultmann, F. A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Sol. Energy 2014, 105, 715–731. [Google Scholar] [CrossRef]

Schallenberg-Rodríguez, J. Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 2013, 20, 219–239. [Google Scholar] [CrossRef]

Ubilla, K.
Jiménez-Estévez, G.A.
Hernádez, R.
Reyes-Chamorro, L.
Irigoyen, C.H.
Severino, B.
Palma-Behnke, R. Smart microgrids as a solution for rural electrification: Ensuring long-term sustainability through cadastre and business models. IEEE Trans. Sustain. Energy 2014, 5, 1310–1318. [Google Scholar] [CrossRef]

Eddine, B.T.
Salah, M.M. Solid waste as renewable source of energy: Current and future possibility in Algeria. Int. J. Energy Environ. Eng. 2012, 3, 17. [Google Scholar] [CrossRef]

Ramirez Camargo, L.
Zink, R.
Dorner, W.
Stoeglehner, G. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Comput. Environ. Urban Syst. 2015, 52, 58–69. [Google Scholar] [CrossRef]

Kanters, J.
Wall, M.
Kjellsson, E. The solar map as a knowledge base for solar energy use. Energy Procedia 2014, 48, 1597–1606. [Google Scholar] [CrossRef]

Desthieux, G.
Carneiro, C.
Camponovo, R.
Ineichen, P.
Morello, E.
Boulmier, A.
Abdennadher, N.
Dervey, S.
Ellert, C. Solar energy potential assessment on rooftops and facades in large built environments based on LIDAR data, image processing, and cloud computing. Methodological background, application, and validation in geneva (solar cadaster). Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef]

Saretta, E.
Bonomo, P.
Frontini, F. A calculation method for the BIPV potential of Swiss façades at LOD2.5 in urban areas: A case from Ticino region. Sol. Energy 2020, 195, 150–165. [Google Scholar] [CrossRef]

Thebault, M.
Clivillé, V.
Berrah, L.
Desthieux, G. Multicriteria roof sorting for the integration of photovoltaic systems in urban environments. Sustain. Cities Soc. 2020, 60, 102259. [Google Scholar] [CrossRef]

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009L0028&qid=1635586375888& (accessed on 15 October 2021).

Desthieux, G.
Carneiro, C.
Susini, A.
Abdennadher, N.
Boulmier, A.
Dubois, A.
Camponovo, R.
Beni, D.
Bach, M.
Leverington, P.
et al. Solar cadaster of Geneva: A decision support system for sustainable energy management. In From Science to Society: New trends in Environmental Informatics
Otjacques, B., Hitzelberger, P., Naumann, S., Wohlgemuth, V., Eds.
Springer: Cham, Switzerland, 2018
pp. 129–137. [Google Scholar] [CrossRef]

Klauser, D.
Remund, J. Calculating irradiation for solar cadastre: Speed vs. Accuracy. In Proceedings of the World Renewable Energy Forum (WREF) 2012, Denver, CO, USA, 13–17 May 2012
Volume 5, pp. 3652–3654. [Google Scholar]

Salieva, R.B. Basis for the Development of a Solar Energy Cadaster. Geliotekhnika 1976, 6, 61–77. [Google Scholar]

Salieva, R.B. Development of a solar-power cadaster. Appl. Sol. Energy 1977, 13, 43–48. [Google Scholar]

Salmanova, F.A.
Kulieva, Z.M. Calculation of the repetition rate and the provision of daily amounts of solar radiation: Cadastre parameters. Appl. Sol. Energy 2007, 43, 243–246. [Google Scholar] [CrossRef]

Moser, D.
Vettorato, D.
Vaccaro, R.
Del Buono, M.
Sparber, W. The PV potential of south Tyrol: An intelligent use of space. Energy Procedia 2014, 57, 1392–1400. [Google Scholar] [CrossRef]

Bocca, A.
Chiavazzo, E.
MacIi, A.
Asinari, P. Solar energy potential assessment: An overview and a fast modeling approach with application to Italy. Renew. Sustain. Energy Rev. 2015, 49, 291–296. [Google Scholar] [CrossRef]

Calcabrini, A.
Ziar, H.
Isabella, O.
Zeman, M. A simplified skyline-based method for estimating the annual solar energy potential in urban environments. Nat. Energy 2019, 4, 206–215. [Google Scholar] [CrossRef]

Esclapés, J.
Ferreiro, I.
Piera, J.
Teller, J. A method to evaluate the adaptability of photovoltaic energy on urban façades. Sol. Energy 2014, 105, 414–427. [Google Scholar] [CrossRef]

Hennecke, D.
Klärle, M. GIS-based solar potential analysis for urban frontages over the day. GIS Sci. Die Z. Geoinformatik 2016, 4, 119–125. [Google Scholar]

Bouty, K.
Gaillard, L.
Thebault, M.
Lokhat, I.
Gallice, A.
Ménézo, C. Solar cadaster in urban area including verticality. In Proceedings of the ISES Solar World Congress 2019, Santiago, Chile, 4–7 November 2019
pp. 2179–2188. [Google Scholar] [CrossRef]

Agugiaro, G.
Nex, F.
Remondino, F.
De Filippi, R.
Droghetti, S.
Furlanello, C. Solar radiation estimation on building roofs and web-based solar cadastre. ISPRS Ann. Photogramm. 2012, 1, 177–182. [Google Scholar] [CrossRef]

Nex, F.
Remondino, F.
Agugiaro, G.
De Filippi, R.
Poletti, M.
Furlanello, C.
Menegon, S.
Dallago, G.
Fontanari, S. 3D SolarWeb: A solar cadaster in the Italian alpine landscape. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2013, 40, 173–178. [Google Scholar] [CrossRef]

Gruber, U.
Riecken, J.
Seifert, M. Germany on the way to 3D-cadastre. ZFV Z. Geodasie Geoinf. Landmanagement 2014, 139, 223–228. [Google Scholar] [CrossRef]
Jetter, F.
Bosch, S. Urban energy transition—Settlement structural information as a basis for the calculation of residential rooftop solar potential. Kartogr. Nachr. 2016, 4, 186–193. [Google Scholar]

Echlouchi, K.
Ouardouz, M.
Bernoussi, A.S. Urban Solar Cadaster: Application in North Morocco. In Proceedings of the 2017 International Renewable and Sustainable Energy Conference (IRSEC) 2017, Tangier, Morocco, 4–7 December 2017. [Google Scholar] [CrossRef]

Gergelova, M.B.
Kuzevicova, Z.
Labant, S.
Kuzevic, S.
Bobikova, D.
Mizak, J. Roof’s potential and suitability for pv systems based on LIDAR: A case study of Komárno, Slovakia. Sustainability 2020, 12, 10018. [Google Scholar] [CrossRef]

Beltran-Velamazan, C.
Monzón-Chavarrías, M.
López-Mesa, B. A method for the automated construction of 3D models of cities and neighbor-hoods from official cadaster data for solar analysis. Sustainability 2021, 13, 6028. [Google Scholar] [CrossRef]

Govehovitch, B.
Thebault, M.
Bouty, K.
Giroux-Julien, S.
Peyrol, É.
Guillot, V.
Ménézo, C.
Desthieux, G. Numerical validation of the radiative model for the solar cadaster developed for greater geneva. Appl. Sci. 2021, 11, 8086. [Google Scholar] [CrossRef]

Mikovits, C.
Schauppenlehner, T.
Scherhaufer, P.
Schmidt, J.
Schmalzl, L.
Dworzak, V.
Hampl, N.
Sposato, R.G. A spatially highly resolved ground mounted and rooftop potential analysis for photovoltaics in austria. ISPRS Int. J. Geo-Inf. 2021, 10, 418. [Google Scholar] [CrossRef]

Bober, A.
Calka, B.
Bielecka, E. Application of state survey and mapping resources for select-ing sites suitable for solar farms. In Proceedings of the 16th International Multidisciplinary Scientific Geoconference (SGEM 2016), Albena, Bulgaria, 29 June–5 July 2016
Volume 1, pp. 593–600. [Google Scholar]

Sánchez-Aparicio, M.
Martín-Jiménez, J.
Del Pozo, S.
González-González, E.
Lagüela, S. Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute pho-tovoltaic potential. Renew. Sustain. Energy Rev. 2021, 135, 110203. [Google Scholar] [CrossRef]

Chiabrando, F.
Danna, C.
Lingua, A.
Noardo, F.
Osello, A. 3D roof model generation and analysis supporting solar system positioning. Geomatica 2017, 71, 137–153. [Google Scholar] [CrossRef]

Pietras-Szewczyk, M.
Szewczyk, L. Modelling of real solar radiation spatial distribution as a tool for solar energy cadastre in the cities. Energy Environ. 2018, 29, 204–215. [Google Scholar] [CrossRef]

Peronato, G.
Rastogi, P.
Rey, E.
Andersen, M. A toolkit for multi-scale mapping of the solar energy-generation potential of buildings in urban environments under uncertainty. Sol. Energy 2018, 173, 861–874. [Google Scholar] [CrossRef]

Stendardo, N.
Desthieux, G.
Abdennadher, N.
Gallinelli, P. GPU-enabled shadow casting for solar potential estimation in large urban areas. Application to the solar cadaster of Greater Geneva. Appl. Sci. 2020, 10, 5361. [Google Scholar] [CrossRef]

Viana-Fons, J.D.
Gonzálvez-Maciá, J.
Payá, J. Development and validation in a 2D-GIS environment of a 3D shadow cast vec-tor-based model on arbitrarily orientated and tilted surfaces. Energy Build. 2020, 224, 110258. [Google Scholar] [CrossRef]

Xu, R.
Wittkopf, S.
Roeske, C. Quantitative evaluation of BIPV visual impact in building retrofits using saliency models. Energies 2017, 10, 668. [Google Scholar] [CrossRef]

Mansueto, G.
Boccardo, P.
Ajmar, A. Satellite Stereo Data Comprehensive Benchmark for DSM Extraction. Lect. Notes Comput. Sci. 2020, 12252, 858–873. [Google Scholar] [CrossRef]

Hilling, F.
de Lange, N. Webgestützte interaktive Solardachkataster. Standort 2010, 34, 104–109. [Google Scholar] [CrossRef]

Lanig, S.
Klärle, M.
Meik, K. Web-based Solar Roof Cadastre Goes International. Geoconnexion Int. Mag. 2011, 10, 30–32. [Google Scholar]

Thebault, M.
Berrah, L.-A.
Desthieux, G.
Ménézo, C. Towards a solar cadastre for the monitoring of solar energy urban deployment: The case of Geneva. In Proceedings of the ISES Solar World Congress 2019, Santiago, Chile, 4–7 November 2019
pp. 2497–2505. [Google Scholar] [CrossRef]

Pedrero, J.
Hermoso, N.
Hernández, P.
Munoz, I.
Arrizabalaga, E.
Mabe, L.
Prieto, I.
Izkara, J.L. Assessment of urban-scale potential for solar PV generation and consumption. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012066. [Google Scholar] [CrossRef]

Bezrukov, V.
Shipkovs, P.
Pugachev, V.
Kashkarova, G.
Bezrukov, V. Investigation of wind energy potential in the Baltic region. In Proceedings of the Solar World Congress 2005, Orlando, FL, USA, 6–12 August 2005
Volume 3, pp. 1749–1754. [Google Scholar]

Bostan, I.
Dulgheru, V.
Ciupercǎ, R. Helical turbine for aeolian systems and micro-hydrostation. In Product Engineering: Eco-Design, Technologies and Green Energy
Talabă, D., Roche, T., Eds.
Springer: Dordrecht, The Netherlands, 2004
pp. 519–528. [Google Scholar] [CrossRef]

Minin, V.A.
Furtaev, A.I. Prospects for the Development of Wind Energy Resources in the Western Sector of the Arctic Zone of Russia. In Proceedings of the International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) 2018, Vladivostok, Russia, 3–4 October 2018
p. 8602694. [Google Scholar] [CrossRef]

Minin, V.A.
Furtaev, A.I. Principal Directions of the Wind Energy Possible Use in the Western Sector of the Russian Arctic. In Proceedings of the International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) 2019, Vladivostok, Russia, 1–4 October 2019
p. 8933878. [Google Scholar] [CrossRef]

Minin, V.A.
Furtaev, A.I. Prospects for the use of wind power for heat supply to consumers in the western sector of the Russian Arctic. IOP Conf. Ser. Earth Environ. Sci. 2020, 539, 012150. [Google Scholar] [CrossRef]

Minin, V.A. Prospects for the Implementation of Wind Power Plants into the Heat Supply Systems of Consumers in the Western Sector of the Arctic. In Proceedings of the International Multi-Conference on Industrial Engineering and Modern Technologies, (FarEastCon) 2020, Vladivostok, Russia, 6–9 October 2019
p. 9271291. [Google Scholar] [CrossRef]

Podgurenko, V.
Kutsan, Y.
Getmanets, O.
Terekhov, V. Simulation of efficiency enhancement of electric power generation by wind tur-bines in wind cadaster various zones. Stud. Syst. Decis. Control. 2021, 346, 63–80. [Google Scholar] [CrossRef]

Michalak, S. A Multipurpose Marine Cadastre to Manage Conflict Use with Marine Renewable Energy. In Trends and Challenges in Maritime Energy Management. WMU Studies in Maritime Affairs
Ölçer, A., Kitada, M., Dalaklis, D., Ballini, F., Eds.
Springer: Cham, Switzerland, 2018
Volume 6, pp. 447–462. [Google Scholar] [CrossRef]

Vandegraft, D.L. A Boundary Delineation System for the Bureau of Ocean Energy Management. Cartogr. Geogr. Inf. Sci. 2015, 42, 58–62. [Google Scholar] [CrossRef]

Vandegraft, D.L. A boundary delineation system for the bureau of ocean energy management. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017. [Google Scholar]

Taylor, C.M.
Smith, B.
Stein, D. The role of MarineCadastre.gov in offshore energy planning. In Proceedings of the OCEANS 2012 MTS/IEEE: Harnessing the Power of the Ocean, the Ocean Resort, Yeosu, Korea, 21–24 May 2012
p. 6405071. [Google Scholar] [CrossRef]

Badea, A.C.
Badea, G.
David, V. Aspects about Green Management of Urban Areas in Romania. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference (SGEM 2015), Albena, Bulgaria, 18–24 June 2015
Volume 2, pp. 721–728. [Google Scholar]

Oprea, L. Green cadastre of Romania-between necessity and realisation. J. Environ. Prot. Ecol. 2018, 19, 208–215. [Google Scholar]

Nowak, M.
Dawidowicz, A.
Źróbek, R.
Tuyet, M.D.T. Identification of development determinants of green information systems for urban areas–Polish case study. Acta Sci. Pol. Adm. Locorum 2020, 19, 45–60. [Google Scholar] [CrossRef]

Zysk, E.
Dawidowicz, A.
Nowak, M.
Figurska, M.
Źróbek, S.
Źróbek, R.
Burandt, J. Organizational aspects of the concept of a green cadastre for rural areas. Land Use Policy 2020, 91, 104373. [Google Scholar] [CrossRef]

Dawidowicz, A.
Kulawiak, M.
Zysk, E.
Kocur-Bera, K. System architecture of an INSPIRE-compliant green cadastre system for the EU Member State of Poland. Remote. Sens. Appl. Soc. Environ. 2020, 20, 100362. [Google Scholar] [CrossRef]

Čubars, E. Creation of reed cadastres. Vide. Tehnologija. Resur. Environ. Technol. Resour. 2017, 1, 70–76. [Google Scholar] [CrossRef]

Gailiusis, B.
Jablonskis, J.
Tomkeviciene, A. Development of hydropower and hydrology sciences. In Proceedings of the Conference of the Lietuvos-Energetikos-Institutas, Kaunas, Lithuania, November 2006
pp. 388–408. [Google Scholar]

Sidorenko, G.I.
Alimirzoev, A.S. Optimization technique for allocation scheme and hydro power plant parameters with respect to regional peculiarities. Appl. Mech. Mater. 2014, 672–674, 472–476. [Google Scholar] [CrossRef]

Bajkowski, S. The application of time-flow curves in hydropower calcula-tions. Acta Sci. Pol.-Form. Circumiectus 2018, 17, 3–12. [Google Scholar] [CrossRef]

Soutullo, S.
Giancola, E.
Sánchez, M.N.
Ferrer, J.A.
García, D.
Súarez, M.J.
Prie-to, J.I.
Antuña-Yudego, E.
Carús, J.L.
Fernández, M.Á.
et al. Methodology for quantifying the energy saving potentials combining building retrofitting, solar thermal energy and geothermal resources. Energies 2020, 13, 5970. [Google Scholar] [CrossRef]

Werner, E. Mapy potencjału słonecznego dla miast (Solar potential maps for cities). Energia-Ekologia-Etyka 2016, 1, 88–96. [Google Scholar]

Freitas, S.
Catita, C.
Redweik, P.
Brito, M.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]

Mrówczyńska, M.
Wawer, M. Próba budowy katastru słonecznego na obszarze miasta Zielona Góra. J. Civ. Eng. Environ. Archit. 2015, 62, 321–333. [Google Scholar] [CrossRef]

Fuhs, M. Ein bisschen Guerilla ist gut. PV Mag. 2013, 2, 54. [Google Scholar]

Henneaux, P.
Labeau, P.-E.
Maun, J.-C. A level-1 probabilistic risk assessment to blackout hazard in transmission power systems. Reliab. Eng. Syst. Saf. 2012, 102, 41–52. [Google Scholar] [CrossRef]

Królikowski, J. Słoneczny kataster. Geodeta 2011, 1, 9–12. [Google Scholar]

Global Solar Atlas. Available online: https://globalsolaratlas.info (accessed on 15 October 2021).

Photovoltaic Geographical Information System. Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 15 October 2021).

Solar Data Portal for Switzerland (Roofs). Available online: https://www.uvek-gis.admin.ch/BFE/sonnendach/ (accessed on 15 October 2021).

Solar Data Portal for Switzerland (Facades). Available online: https://www.uvek-gis.admin.ch/BFE/sonnenfassade/ (accessed on 15 October 2021).

Solar Data Portal for Grand Genève. Available online: https://sitg-lab.ch/solaire/ (accessed on 15 October 2021).

Solar Data Portal for Graz. Available online: https://geodaten.graz.at/WebOffice/synserver?project=solar_pv&client=core (accessed on 15 October 2021).

Solar Data Portal for Vienna. Available online: https://www.wien.gv.at/solarpotenzial3d/#/ (accessed on 15 October 2021).

Solar Data Portal for Calgary. Available online: https://maps.calgary.ca/SolarPotential/ (accessed on 15 October 2021).

Solar Data Portal for Hannover. Available online: https://hannit.maps.arcgis.com/apps/webappviewer/index.html?id=ae44d505b53a493cb3f1f5c36e310786 (accessed on 15 October 2021).

Solar Data Portal for Hessen. Available online: https://www.energieland.hessen.de/ (accessed on 15 October 2021).

Solar Data Portal for Munich. Available online: https://geoportal.muenchen.de/portal/solarpotenzial/ (accessed on 15 October 2021).

Solar Data Portal for London. Available online: https://www.london.gov.uk/what-we-do/environment/energy/energy-buildings/london-solar-opportunity-map (accessed on 15 October 2021).

Solar Data Portal for Amsterdam. Available online: https://maps.amsterdam.nl/ (accessed on 15 October 2021).

Solar Data Portal for Wrocław. Available online: https://gis.um.wroc.pl/en/maps/solarna/ (accessed on 15 October 2021).

Solar Data Portal for Boston. Available online: www.mapdwell.com/boston (accessed on 15 October 2021).

Solar Data Portal for San Francisko. Available online: http://app.dumpark.com/sunlight/sf (accessed on 15 October 2021).

Frontini, F.
vonBallmoos, C.
Di Gregorio, S. Renovation of a residential building in Switzerland, with BIPV façades, in order to achieve the nZEB standard. In Proceedings of the Advanced Building Skins Conference, Bressanone, Italy, 28–29 October 2014. [Google Scholar]

Fath, K.
Stengel, J.
Sprenger, W.
Wilson, H.R.
Schultmann, F.
Kuhn, T.E. Amethod for predicting the economic potential of (building-integrated) photovoltaicsin urbanareas based on hourly Radiance simulations. Sol. Energy 2015, 116, 357–370. [Google Scholar] [CrossRef]

Brito, M.C.
Freitas, S.
Guimarães, S.
Catita, C.
Redweik, P. The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renew. Energy 2017, 111, 85–94. [Google Scholar] [CrossRef]

Kausika, B.
Moshrefzadeh, M.
Kolbe, T.H.
nav Sark, W. 3D Solar Potential Modelling and Analysis: A case study for the city of Utrecht. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC 2016), Munich, Germany, 20–24 June 2016. [Google Scholar]

Wind Cadastre in Belarus. Available online: https://www.windpower.by/en/news/949.html (accessed on 15 October 2021).

Cadastre of Renewable Energy Sources in Tajikistan. Available online: https://policy.asiapacificenergy.org/node/4346 (accessed on 15 October 2021).

Global Wind Atlas. Available online: https://globalwindatlas.info/about/introduction (accessed on 15 October 2021).

The Wind Atlas of Switzerland. Available online: https://www.uvek-gis.admin.ch/BFE/storymaps/EE_Windatlas/?lang=en (accessed on 15 October 2021).

Wind Installations Map for Spain. Available online: https://www.esios.ree.es/en/interesting-maps/wind-installations-map (accessed on 15 October 2021).

Wind Installations Map for Spain by Town. Available online: https://www.esios.ree.es/en/interesting-maps/wind-installations-town-map (accessed on 15 October 2021).

Windenergy for Amsterdam. Available online: https://maps.amsterdam.nl/windzoekgebieden/?LANG=en (accessed on 15 October 2021).

Biogas Plants and Biomass Potential for Switzerland. Available online: https://map.geo.admin.ch/?topic=energie&lang=en&bgLayer=ch.swisstopo.pixelkarte-grau&layers=ch.bfe.biomasse-nicht-verholzt,ch.bfe.biomasse-verholzt,ch.bfe.biogasanlagen&layers_opacity=0.75,0.75,1&E=2547035.78&N=1246967.51&zoom=2&catalogNodes=2419,2420,2427,2480,2429,2431,2434,2436,2767,2441,3206&layers_visibility=false,true,true (accessed on 15 October 2021).

Cogeneration, Wastes and Biomass/Biogas Installations Map for Spain. Available online: https://www.esios.ree.es/es/mapas-de-interes/mapa-instalaciones-cogen-residuos-biomasa-municipio (accessed on 15 October 2021).

Potential of Small Hydropower Plants Map for Switzerland. Available online: https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/geoinformation/geodata/water/potential-of-small-hydropower-plants-in-switzerland.html (accessed on 15 October 2021).

GeoPortal of Munich—Energy and Climate. Available online: https://geoportal.muenchen.de/portal/energie/ (accessed on 15 October 2021).

Vienna City Map. Available online: https://www.wien.gv.at/umweltgut/public/ (accessed on 15 October 2021).

Meier, P.F. The Changing Energy Mix: A Systematic Comparison of Renewable and Nonrenewable Energy
Oxford Scholarship: Oxford, England, 2020. [Google Scholar] [CrossRef]

Tsitou, A.
Lapko, O. Wind Power. In Proceedings of the 75th Student Scientific-Technical Conference, Minsk, Belarus, 23 April 2019
pp. 173–174. [Google Scholar]

Saryyev, K.A. Determining wind energy resources in Turkmenistan. Power Eng. Res. Equip. Technol. 2021, 22, 143–154. [Google Scholar] [CrossRef]

Mozgeris, G.
Radzevičiūtė, A.
Lynikas, M.
Palicinas, M.
Puslys, R.
Galaunė, A. On the availability of information and methods for modeling of forest biomass at regional level in Lithuania. In GIS-Based Methods for Biomass Modeling at Regional Level in the Baltic Countries
Lithuanian University of Agriculture: Kaunas, Lithuania, 2006. [Google Scholar]

Szopińska, K. Creation of Theoretical Road Traffic Noise Model with the Help of GIS. In Proceedings of the 10th International Conference “Environmental Engineering”, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar] [CrossRef]

Cienciała, A.
Sobolewska-Mikulska, K.
Sobura, S. Credibility of the cadastral data on land use and the methodology for their verification and update. Land Use Policy 2021, 102, 105204. [Google Scholar] [CrossRef]

Kocur-Bera, K.
Frąszczak, H. Coherence of Cadastral Data in Land Management—A Case Study of Rural Areas in Poland. Land 2021, 10, 399. [Google Scholar] [CrossRef]
Bydłosz, J.
Bieda, A. Developing a UML Model for the 3D Cadastre in Poland. Land 2020, 9, 466. [Google Scholar] [CrossRef]

Bieda, A.
Bydłosz, J.
Parzych, P.
Pukanská, K.
Wójciak, E. 3D Technologies as the Future of Spatial Planning: The Example of Krakow. Geomat. Environ. Eng. 2020, 14, 15–33. [Google Scholar] [CrossRef]

Dawidowicz, A.
Zysk, E.
Źróbek, R. A Methodological Evaluation of the Polish Land Administration System Using the Fit-For-Purpose Approach. Geomat. Environ. Eng. 2020, 14, 31–47. [Google Scholar] [CrossRef]

Mitka, B.
Klapa, P.
Gniadek, J. Use of Terrestrial Laser Scanning for Measurements of Wind Power Stations. Geomat. Environ. Eng. 2019, 13, 39–49. [Google Scholar] [CrossRef]

Mickrenska-Cherneva, C.
Mladenov, R. Implementation of GIS Application for Water Company Needs. Geomat. Environ. Eng. 2020, 14, 47–56. [Google Scholar] [CrossRef]