Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[110990] Artykuł:

The Impact of Precipitation Characteristics on the Washout of Pollutants Based on the Example of an Urban Catchment in Kielce

(WPŁYW CHARAKTERYSTYK OPADOWYCH NA ZMYWANIE ZANIECZYSZCZEŃ NA PRZYKŁADZIE ZLEWNI ZURBANIZOWANEJ W KIELCACH)
Czasopismo: Water   Tom: 13, Strony: 3187
ISSN:  2073-4441
Opublikowano: Listopad 2021
Liczba arkuszy wydawniczych:  1.30
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jarosław Górski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Bartosz Szeląg orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka2525.0033.33  
Katarzyna Górska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka2525.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

washout coefficient  pollutograph  precipitation characteristics  total suspended solids TSS  heavy metals HMs 



Abstract:

This paper reports the results of studies on the concentrations of total suspended solids (TSS) and heavy metals (HMs) (Cu, Zn, Cr, Ni, Cd, Pb) in stormwater. Pollutant loads were calculated for the observed high water stages. Pollutographs showing M/Mc = f(V/Vc) relationships were
generated. In the description of the relationships, two functions, namely the exponential and the power functions, were employed. These represented the dynamics of the pollutant washout from the surface of the catchment area. The analyses demonstrated that the exponential function provides a slightly better description of the course of the process compared with the power function. In the former case, correlation coefficients (R) ranged from 0.900 to 0.999, whereas in the latter they ranged from 0.864 to 0.999. The analyses of correlations between the characteristics describing discharge hydrographs and the values of pollutant washout coefficients indicate that the strongest statistical
relationships were identified for TSS. It was demonstrated that the value of the washout coefficient for total suspended solids (kTSS) drops with an increase in rain intensity (q). This also depends on the 10-min precipitation (Ptd=10). Regarding the studied heavy metals, a statistically significant
impact of the dry period (tbd) on the washout coefficient was observed only for lead (kPb). Taking into account the washout coefficient in the first flush model makes it possible to improve the accuracy of calculations. This is important for understanding the studied phenomenon.



B   I   B   L   I   O   G   R   A   F   I   A
1. Hossain, I. Imteaz, M. Gato-Trinidad, S. Shanableh, A. Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off. Int. J. Civ. Environ. Eng. 2010, 2, 210–217.
2. Sartor, J.D. Boyd, G.B. Agardy, F.J. Water pollution aspects of street surface contaminants. Contract 1972, 14, 921.
3. Bertrand-Krajewski, J.L. Chebbo, G. Saget, A. Distribution of pollutant mass vs volume in stormwater discharges and the first flash phenomenon. Water Resour. 1998, 32, 2341–2356.
4. Osuch-Pajdzińska, E. Zawilski, M. Model of Storm Sewer Discharge. I: Description. J. Environ. Eng. 1998, 124, 593–599. https://doi.org/10.1061/(asce)0733-9372(1998)124:7(593).
5. Osuch-Pajdzińska, E. Zawilski, M. Model for Storm Sewer Discharge. II: Calibration and Verification. J. Environ. Eng. 1998, 124, 600–611. https://doi.org/10.1061/(asce)0733-9372(1998)124:7(600).
6. Berretta, C. Gnecco, J. Lanza, L.G. Berbera, P. An Investigation of Wash-Off Controlling Parameters at Two Urban Sites in The Town of Genova. 2007. Available online: http://documents.irevues.inist.fr/bitstream/handle/2042/25296/1425_254berre tta.pdf?sequence=1 (accessed on 15 April 2021).
7. Egodawatta, P. Translation of Small-Plot Scale Pollutant Build-Up and Wash-Off Measurements to Urban Catchment Scale. 2007. Available online: https://eprints.qut.edu.au/16502/1/Prasanna_Egodawatta_Thesis.pdf (accessed on 15 April 2021).
8. Alley, W.M. Smith, P.E. Estimation of accumulation parameters for urban runoff quality modeling. Water Resour. Res. 1981, 17, 1657–1664. https://doi.org/10.1029/wr017i006p01657.
9. Lee, J.Y. Kim, H. Kim, Y. Han, M.Y. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environ. Pollut. 2011, 159, 884–888. https://doi.org/10.1016/j.envpol.2010.12.022.
10. Yuan, Q. Guerra, H.B. Kim, Y. An Investigation of the Relationships between Rainfall Conditions and Pollutant Wash-Off from the Paved Road. Water 2017, 9, 232. https://doi.org/10.3390/w9040232.
11. Vezzaro, L. Sharma, A.K. Mikkelsen, P.S. Model-Based Comparison of Strategies for Reduction of Stormwater Micropollutants Emission. 2013. Available online: https://hal.archives-ouvertes.fr/hal-03303544/document (accessed on 15 April 2021).
12. Zhao, H. Li, X. Understanding the relationship between heavy metals in road-deposited sediments and washoff particles in urban stormwater using simulated rainfall. J. Hazard. Mater. 2013, 246, 267–276. https://doi.org/10.1016/j.jhazmat.2012.12.035.
13. Deletic, A. Maksimovic, C. Loughreit, F. Butler, D. Modelling The Management of Street Surface Sediments in Urban Runoff. 1998. Available online: https://www.academia.edu/2860576/Modelling_the_management_of_street_surface_sediments_in_ urban_runoff (accessed archived on 15 April 2021).
14. Avellaneda, P. Ballestero, T. Roseen, R. Houle, J. Linder, E. Bayesian Storm-Water Quality Model and Its Application to Water Quality Monitoring. J. Environ. Eng. 2011, 137, 541–550. https://doi.org/10.1061/(asce)ee.1943-7870.0000360.
15. Chen, J. Adams, B.J. Analytical Urban Storm Water Quality Models Based on Pollutant Buildup and Washoff Processes. J. Environ. Eng. 2006, 132, 1314–1330. https://doi.org/10.1061/(asce)0733-9372(2006)132:10(1314).
16. Dotto, C.B. Mannina, G. Kleidorfer, M. Vezzaro, L. Henrichs, M. McCarthy, D. Freni, G. Rauch, W. Deletic, A. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Res. 2012, 46, 2545–2558. https://doi.org/10.1016/j.watres.2012.02.009.
17. Fraga, I. Cea, L. Puertas, J. Suárez, J. Jiménez, V. Jácome, A. Global Sensitivity and GLUE-Based Uncertainty Analysis of a 2D-1D Dual Urban Drainage Model. J. Hydrol. Eng. 2016, 21, 04016004. https://doi.org/10.1061/(asce)he.1943-5584.0001335.
18. Perera, T. McGree, J. Egodawatta, P. Jinadasa, K. Goonetilleke, A. Catchment based estimation of pollutant event mean concentration (EMC) and implications for first flush assessment. J. Environ. Manag. 2021, 279, 111737. https://doi.org/10.1016/j.jenvman.2020.111737.
19. Rossmann, L.A. Storm Water Management Model, User’s Manual, Version 5.1. National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2004.
20. Tuomela, C. Sillanpää, N. Koivusalo, H. Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM). J. Environ. Manag. 2019, 233, 719–727. https://doi.org/10.1016/j.jenvman.2018.12.061.
21. Egemose, S. Petersen, A.B. Sønderup, M.J. Flindt, M.R. First Flush Characteristics in Separate Sewer Stormwater and Implications for Treatment. Sustainability 2020, 12, 5063. https://doi.org/10.3390/su12125063.
22. Verdaguer, M. Clara, N. Gutierrez, O. Poch, M. Application of Ant-Colony-Optimization algorithm for improved management of first flush effects in urban wastewater systems. Sci. Total. Environ. 2014, 485, 143–152. https://doi.org/10.1016/j.scitotenv.2014.02.140.
23. Mrowiec, M. Kamizela, T. Kowalczyk, M. Occurrence of first flush phenomenon in drainage system of Częstochowa. Env. Prot. Eng. 2009, 35, 73–80.
24. Deletic, A. The first flush load of urban surface runoff. Water Res. 1998, 32, 2462–2470. https://doi.org/10.1016/s0043-1354(97)00470-3.
25. Sansalone, J.J. Buchberger, S.G. Partitioning and First Flush of Metals in Urban Roadway Storm Water. J. Environ. Eng. 1997, 123, 134–143. https://doi.org/10.1061/(asce)0733-9372(1997)123:2(134).
26. Stahre, P. Urbonas, B. Stormwater Detention: For Drainage, Water Quality and CSO Management, 1st ed. Prentice Hall PTR: Hoboken, NJ, USA, 1990.
27. Kim, I. Ko, S.-O. Jeong, S. Yoon, J. Characteristics of washed-off pollutants and dynamic EMCs in parking lots and bridges during a storm. Sci. Total. Environ. 2007, 376, 178–184. https://doi.org/10.1016/j.scitotenv.2006.12.053.
28. McCarthy, D.T. A traditional first flush assessment of E. coli in urban stormwater runoff. Water Sci. Technol. 2009, 60, 2749–2757. https://doi.org/10.2166/wst.2009.374.
29. Kang, J.-H. Kayhanian, M. Stenstrom, M.K. Predicting the existence of stormwater first flush from the time of concentration. Water Res. 2008, 42, 220–228. https://doi.org/10.1016/j.watres.2007.07.001.
30. Lee, J. Bang, K. Ketchum, L. Choe, J. Yu, M. First flush analysis of urban storm runoff. Sci. Total. Environ. 2002, 293, 163–175. https://doi.org/10.1016/s0048-9697(02)00006-2.
31. Qin, H.-P. He, K.-M. Fu, G. Modeling middle and final flush effects of urban runoff pollution in an urbanizing catchment. J. Hydrol. 2016, 534, 638–647. https://doi.org/10.1016/j.jhydrol.2016.01.038.
32. Ma, Z.-B. Ni, H.-G. Zeng, H. Wei, J.-B. Function formula for first flush analysis in mixed watersheds: A comparison of power and polynomial methods. J. Hydrol. 2011, 402, 333–339. https://doi.org/10.1016/j.jhydrol.2011.03.029.
33. Jeung, M. Baek, S. Beom, J. Cho, K.H. Her, Y. Yoon, K. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. J. Hydrol. 2019, 575, 1099–1110. https://doi.org/10.1016/j.jhydrol.2019.05.079.
34. Szeląg, B. Bąk, Ł. Suligowski, R. Górski, J. Statistical models to predict discharge overflow. Water Sci. Technol. 2018, 78, 1208–1218. https://doi.org/10.2166/wst.2018.392.
35. Bąk, Ł. Szeląg, B. Górski, J. Górska, K. The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. Appl. Sci. 2019, 9, 2210. https://doi.org/10.3390/app9112210.
36. Guide to Instruments and Methods of Observation. Volume I—Measurement of Meteorological Variables. WMO-No. 8. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=10616 (accessed on 20 October 2021).
37. Licznar, P. Preliminary results of comparative field studies on the performance of OTT Pluvio2 electronic weight-based rain gauge and Parsivel laser disdrometer. INSTAL 2009, 7, 43–50. (In Polish)
38. PN-EN ISO 8288:2002. Water Quality—Determination of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead—Atomic Adsorption Spectroscopy with Flame Atomization. Available online: https://www.pkn.pl/en (accessed on 20 October 2021).(In Polish)
39. PN-EN ISO 15587-1:2005. Water Quality—Digestion for the Determination of Selected Elements in Water—Part 1: Aqua Regia Digestion. Available online: https://www.pkn.pl/en (accessed on 20 October 2021).(In Polish)
40. PN-EN 872:2007. Water Quality–Determination of Suspended Solids—Method by Filtration through GLASS fiber Filters. Available online: https://www.pkn.pl/en (accessed on 20 October 2021).(In Polish)
41. Rutkowski, L. Artificial Intelligence Methods and Techniques PWN: Warszawa, Poland, 2006.
42. Nocoń, W. Barbusiński, K. Nocoń, K. Kernert, J. Changes in Trace Metal Load in Suspended Solids Carried Along the River. Ochr. Sr. 2013, 35, 33–38.
43. Brekhovskikh, V.F. Volkova, Z.V. Kocharyan, A.G. Heavy Metals in the Ivan’kovo Reservoir Bottom Sediments. Water Resour. 2001, 28, 278–287. https://doi.org/10.1023/a:1010448723589.
44. Bibby, R.L. Webster-Brown, J. Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand)
a comparison with non-urban SPM. Sci. Total. Environ. 2005, 343, 177–197. https://doi.org/10.1016/j.scitotenv.2004.09.041.
45. Brombach, H. Fuchs, S. Datenpool gemessener Verschmutzungskonzentrationen in Misch-und Trennkanalisationen ATV-DVWK—Forschungsfonds, Projekt 1-01 GFA: Hennef, Germany, 2001.
46. Santa Monica In-Line Storm Drain Runoff Infiltration System Project: Final Report. Public Works, Civil Engineering Division, City of Santa Monica. 2014. Available online: https://www.smbrc.ca.gov/docs/sm_inline_rpt.pdf (accessed on 15 April 2021).
47. Lundy, L. Ellis, J. Revitt, D. Risk prioritisation of stormwater pollutant sources. Water Res. 2012, 46, 6589–6600. https://doi.org/10.1016/j.watres.2011.10.039.
48. Królikowska, J. Królikowski, A. Precipitation Water. Drainage, Management, Pre-Treatment and Use Seidel-Przywecki: Piaseczno, Poland, 2012.
49. Gnecco, I. Berretta, C. Lanza, L. La Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 2005, 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017.
50. Gasperi, J. Kafi–Benyahia, M. Lorgeoux, C. Moilleron, R. Gromaire, M.-C. Chebbo, G. Wastewater quality and pollutant loads in combined sewers during dry weather periods. Urban Water J. 2008, 5, 305–314. https://doi.org/10.1080/03087290802201415.
51. Taebi, A. Droste, R.L. Pollution loads in urban runoff and sanitary wastewater. Sci. Total. Environ. 2004, 327, 175–184. https://doi.org/10.1016/j.scitotenv.2003.11.015.
52. Kabata-Pendias, A. Pendias, H. Biogeochemistry of Trace Elements PWN: Warszawa, Poland, 1999.
53. Królikowski, A. Garbarczyk, K. Gwoździej-Mazur, J. Butarewicz, A. Sediments Formed in Stormwater Sewer Facilities, Monograph 35 PAN: Lublin, Poland, 2005.
54. Djukic, A. Lekić, B. Rajaković-Ognjanović, V. Veljovic, D. Vulić, T. Đolić, M. Naunovic, Z. Despotović, J. Prodanovic, D. Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J. Environ. Manag. 2016, 168, 104–110. https://doi.org/10.1016/j.jenvman.2015.11.035.
55. Gan, H. Zhuo, M. Li, D. Zhou, Y. Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China. Environ. Monit. Assess. 2007, 140, 147–159. https://doi.org/10.1007/s10661-007-9856-2.
56. Zgheib, S. Moilleron, R. Chebbo, G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Res. 2012, 46, 6683–6692. https://doi.org/10.1016/j.watres.2011.12.012.
57. Valtanen, M. Sillanpää, N. Setälä, H. The Effects of Urbanization on Runoff Pollutant Concentrations, Loadings and Their Seasonal Patterns under Cold Climate. Water Air Soil Pollut. 2014, 225, 1–16. https://doi.org/10.1007/s11270-014-1977-y.
58. Rogula-Kozłowska, W. Majewski, G. Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. https://doi.org/10.1007/s10661-015-4450-5.
59. Sakson, G. Łódzka, P. Zawiliński, M. Badowska, E. Brzezińska, A. Stormwater pollution as the basis of choice the method of their management. J. Civ. Eng. Environ. Arch. 2014, XXXI, 253–264. https://doi.org/10.7862/rb.2014.60.
60. The first flush in sewer systems. Water Sci. Technol. 1996, 33, 101–108. https://doi.org/10.1016/0273-1223(96)00375-7.
61. Barone, L. Pilotti, M. Valerio, G. Balistrocchi, M. Milanesi, L. Chapra, S.C. Nizzoli, D. Analysis of the residual nutrient load from a combined sewer system in a watershed of a deep Italian lake. J. Hydrol. 2019, 571, 202–213. https://doi.org/10.1016/j.jhydrol.2019.01.031.
62. Chow, M.F. Yusop, Z. Sizing first flush pollutant loading of stormwater runoff in tropical urban catchments. Environ. Earth Sci. 2014, 72, 4047–4058. https://doi.org/10.1007/s12665-014-3294-6.