Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[110670] Artykuł:

Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes

Czasopismo: Science and Engineering of Composite Materials   Tom: 28, Zeszyt: 1, Strony: 555-567
ISSN:  2191-0359
Opublikowano: Pażdziernik 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport10070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

concrete  polypropylene fibres  rebar  chloride corrosion 



Abstract:

Concrete with the addition of polypropylene fibres is more cohesive and has better adhesion, deformability and tightness because the fibres “bind” the concrete matrix together and prevent large pores from forming in the concrete mix and limit the formation and spread of shrinkage cracks. Therefore, it can be assumed that polypropylene fibres affect the effectiveness of the concrete cover as a layer protecting steel bars against corrosion. This article presents the results of tests allowing us to estimate the effect of addition of polypropylene fibres on the reduction of reinforcing bars corrosion in concrete caused by the action of chlorides. Evaluation of the degree of corrosion of the reinforcement was analysed using the electrochemical polarisation galvanostatic pulse technique. The use of such a method allowed for the quantitative estimation of the effect of the addition of polypropylene fibre on the reduction of corrosion activity of the reinforcement in concrete.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Ramakrishnan V. Materials and properties of fibre reinforced concrete. Proc ISFRC. 1987
1(1):3–24. Search in Google Scholar

[2] Brandt AM. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct. 2008
86:3–9. Search in Google Scholar

[3] Brandt AM. Cement based composites: materials, mechanical properties and performance. Boca Raton, Florida, United States: Taylor & Francis, CRC Press
2009. Search in Google Scholar

[4] Adhikary SK, Rudžionis Ž, Balakrishnan A, Jayakumar V. Investigation on the mechanical properties and post-cracking behavior of polyolefin fibre reinforced concrete. Fibres. 2019
7(1):8. 10.3390/fib7010008. Search in Google Scholar

[5] Glinicki MA. Testing of macro-fibres reinforced concrete for industrial floors. Cem Lime Concr. 2008
13:184–95. Search in Google Scholar

[6] Kurlapov D, Klyuev S, Biryukov Y, Vatin N, Biryukov D, Fediuk R, et al. Reinforcement of flexural members with basalt fibre mortar. Fibres. 2021
9(4):26. 10.3390/fib9040026. Search in Google Scholar

[7] Karwowska J, Łapko A. The usability of using modern fibre reinforced composites in building constructions (in polish). Civ Environ Eng. 2011
2:41–6. Search in Google Scholar

[8] Jasiczak J, Mikołajczak P. Technology of concrete modified with admixtures and additives: overview of domestic and foreign trends (in polish). Poznań: Monograph, Poznan University of Technology Publisher
1997. Search in Google Scholar

[9] PN-EN 14889-2:2007 Fibres for concrete – Part 2: Polymer fibres – Definitions, requirements and compliance. Search in Google Scholar

[10] Jhatila AA, Mastoi AK, Siyal ZA, Rind TA, Memon IA. Influence of long polypropylene fibre on the properties of concrete. Quest Res J. 2020
18(2):38–43. 10.52584/QRJ.1802.06. Search in Google Scholar

[11] Vivas JC, Zerbino R, Torrijos MC, Giaccio G. Effect of the fibre type on concrete impact resistance. Constr Build Mater. 2020
264:120200. 10.1016/j.conbuildmat.2020.120200. Search in Google Scholar

[12] Korneeva I. Extensibility of fibre reinforced concrete. IOP Conf Ser Mater Sci Eng. 2019
667:012044. 10.1088/1757-899X/667/1/012044. Search in Google Scholar

[13] Logoń D, Schabowicz K, Roskosz M, Fryczowski K. The increase in the elastic range and strengthening control of quasi brittle cement composites by low-module dispersed reinforcement: an assessment of reinforcement effects. Materials. 2021
14(2):341. 10.3390/ma14020341. Search in Google Scholar

[14] Mandava N
, Murali K
, Reddy MS, Reddy N. Investigation of reinforced concrete beams by incorporating polypropylene fibre reinforced polymer composites. Int J Civ Eng Technol. 2018
9(1):423–30. Search in Google Scholar

[15] Schabowicz K, Sulik P, Zawiślak Ł. Reduction of load capacity of fibre cement board facade cladding under the influence of fire. Materials. 2021
14(7):1769. 10.3390/ma14071769. Search in Google Scholar

[16] Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 2013
37(4):259–79. 10.1002/fam.2128. Search in Google Scholar

[17] Wang DY. Novel fire retardant polymers and composite materials. Duxford, UK: Woodhead Publishing
2017. Search in Google Scholar

[18] Ede A, Aina AO. Effects of coconut husk fibre and polypropylene fibre on fire resistance of concrete. Int J Eng Sci Manag. 2015
5(1):171–9. Search in Google Scholar

[19] Chang CP, Huang SW, Li XF, Tian B, Hou ZY. A study of the capability for fire resistance of polypropylene fibre concrete. Adv Mater Res. 2013
857:116–23. 10.4028/www.scientific.net/AMR.857.116. Search in Google Scholar

[20] Berrocal CG, Lundgren K, Löfgren I. The effect of fibres on corrosion of reinforced concrete. In: fib Bulletin 95. Fibre reinforced concrete: from design to structural applications. Switzerland: Ecole Polytechnique Fédérale de Lausanne
2020. 10.35789/fib.BULL.0095.Ch37. Search in Google Scholar

[21] Zhao X, Liu R, Qi W, Yang Y. Corrosion resistance of concrete reinforced by zinc phosphate pretreated steel fibre in the presence of chloride ions. Materials. 2020
13(16):3636. 10.3390/ma13163636. Search in Google Scholar

[22] Zych T. Study on water permeability, frost damage and de-icing salt scaling of hybrid fibre reinforced concretes. 11th International Symposium on Brittle Matrix Composites (BMC). Vol. 11. Warsaw: Brittle Matrix Composites
Sep 28–30, 2015. p. 239–50. Search in Google Scholar

[23] Kątna Z. The use of fibres for cement slurries in boreholes. Kerosene – Gas 3, 2009. Search in Google Scholar

[24] Sun Z, Xu Q. Microscopic, physical and mechanical analysis of polypropylene fibre reinforced concrete. Mater Sci Eng A. 2009
527:198–204. 10.1016/j.msea.2009.07.056. Search in Google Scholar

[25] Nelyubova V, Babaev V, Alfimova N, Usikov S, Masanin O. Improving the efficiency of fibre concrete production. Constr Mater Products. 2020
2(2):1–7.10.34031/2618-7183-2019-2-2-4-9. Search in Google Scholar

[26] Muley P, Varpe S, Ralwani R. Chopped carbon fibres innovative material for enhancement of concrete performances. Int J Sci Eng Appl Sci (IJSEAS). 2015
1(4):164–9. Search in Google Scholar

[27] Jena B, Sahoo K, Mohanty BB. Comparative study on self-compacting concrete reinforced with different chopped fibres. Proc Inst Civ Engineers: Constr Mater. 2018
171(2):72–84. Search in Google Scholar

[28] Glinicki MA. Concrete with structural reinforcement. XXV Nationwide Workshops Struct Designers
2010. p. 279–308. Search in Google Scholar

[29] Raczkiewicz W, Kossakowski PG. Electrochemical diagnostics of sprayed fibre-reinforced concrete corrosion. Appl Sci. 2019
9:3763. 10.3390/app9183763. Search in Google Scholar

[30] Srikumar R, Das BB, Goudar SK. Durability studies of polypropylene fibre reinforced concrete: select proceedings of ICSCBM 2018. Sustain Constr Build Mater. Singapore: Springer
2019. 10.1007/978-981-13-3317-0_65. Search in Google Scholar

[31] Mardani-Aghabaglou A, İlhan M, Özen S. The effect of shrinkage reducing admixture and polypropylene fibres on drying shrinkage behaviour of concrete. Cem Lime Concr. 2019
22/84(3):227–31. 10.32047/CWB.2019.24.3.227. Search in Google Scholar

[32] Hoła J, Bień J, Sadowski Ł, Schabowicz K. Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bull Pol Acad Sci Technical Sci. 2015
63(1):87–96. 10.1515/bpasts-2015-0010. Search in Google Scholar

[33] Kothari A, Habermehl-Cwirzen K, Hedlund H, Cwirzen A. A review of the mechanical properties and durability of ecological concretes in a cold climate in comparison to standard ordinary portland cement-based concrete. Materials. 2020
13(16):3467. 10.3390/ma13163467. Search in Google Scholar

[34] Landa Ruiz L, Croche Belin R, Santiago Hurtado G, Baltazar Zamora M, Moreno Landeros VM, Cuevas-Rodríguez J, et al. Evaluation of the influence of the level of corrosion of the reinforcing steel in the moment-curvature diagrams of rectangular concrete columns. Eur J Eng Res Sci. 2021
6(3):74–80. 10.24018/ejers.2021.6.3.2423. Search in Google Scholar

[35] Bertolini L, Elsener B, Pedeferri P, Polder R. Corrosion of steel in concrete. 2nd edn. Weinheim: Wiley VCH
2004. Search in Google Scholar

[36] Kurdowski W. Cement and concrete chemistry. Industrial chemistry and chemical engineering. Warsaw, Poland: Springer, Ringier Axel Springer Polska
2014. Search in Google Scholar

[37] Verma SK, Bhadauria SS, Akhtar S. Monitoring corrosion of steel bars in reinforced concrete structures. Sci World J. 2014
2014:957904. 10.1155/2014/957904. Search in Google Scholar

[38] Luo D, Li Y, Li J, Lim KS, Nazal NAM, Ahmad H. A recent progress of steel bar corrosion diagnostic techniques in RC structures. Sensors. 2018
19:34. Search in Google Scholar

[39] Jaśniok M. Assessing effects of chloride-induced corrosion of galvanized reinforcing steel in cement mortar, using impedance spectroscopy and scanning microscopy. Prot Corros. 2018
61(7):176–81. 10.15199/41.2018.7.1. Search in Google Scholar

[40] Krykowski T, Jaśniok T, Recha F, Karolak M. A cracking model for reinforced concrete cover, taking account of the accumulation of corrosion products in the ITZ layer, and including computational and experimental verification. Materials. 2020
13(23):5375. 10.3390/ma13235375. Search in Google Scholar

[41] Raczkiewicz W, Wójcicki A, Grzmil W, Zapała-Sławeta J. Impact of environment conditions on the degradation process of selected reinforced concrete elements. Mater Sci Eng. 2019
471:032048. 10.1088/1757-899X/471/3/032048. Search in Google Scholar

[42] Raczkiewicz W. Influence of the air-entraining agent in the concrete coating on the reinforcement corrosion process in case of simultaneous action of chlorides and frost. Adv Mater Sci. 2018
18(1):13. 10.1515/adms-2017-0023. Search in Google Scholar

[43] Jaśniok M, Jaśniok T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area. In: 9th International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures, Procedia Engineering. Vol. 193
2017. p. 4310438. 10.1016/j.proeng.2017.06.234. Search in Google Scholar

[44] Melchers R. Long-term durability of marine reinforced concrete structures. Mar Sci Eng. 2020
8(4):290. 10.3390/jmse8040290. Search in Google Scholar

[45] Liu J, Jiang Z, Zhao Y, Zhou H, Wang X, Zhou H, et al. Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment. Materials. 2020
13(17):3900. 10.3390/ma13173900. Search in Google Scholar

[46] Wang Y, Liu C, Li Q, Wu L. Chloride ion concentration distribution characteristics within concrete covering-layer considering the reinforcement bar presence. Ocean Eng. 2019
173:608–16. Search in Google Scholar

[47] Ściślewski Z. Durability of reinforced concrete structures. Warsaw: Arkady
1999. (in Polish). Search in Google Scholar

[48] Chess P, Green W. Durability of reinforced concrete structures. 1st edn. Boca Raton, FL, USA: CRC Press
2019. Search in Google Scholar

[49] Raczkiewicz W, Grzmil W. Assessment of the impact of cement type on the process of concrete carbonation and reinforcement corrosion in reinforced concrete specimens. Cem Lime Concr. 2017
4:311–9. Search in Google Scholar

[50] Kuziak J, Woyciechowski P, Kobyłka R, Wcisło A. The content of chlorides in blast-furnace slag cement as a factor affecting the diffusion of chloride ions in concrete. MATEC Web Conf. 2018
163:05007. 10.1051/matecconf/201816305007. Search in Google Scholar

[51] Ariza-Figueroa HA, Bosch J, Baltazar-Zamora MA, Croche R, Santiago-Hurtado G, Landa-Ruiz L, et al. Corrosion behavior of AISI 304 stainless steel reinforcements in SCBA-SF ternary ecological concrete exposed to MgSO4. Materials. 2020
13(10):2412. 10.3390/ma13102412. Search in Google Scholar

[52] Brodnan M, Koteš P. Assessment of the current state of the concrete structure of the tribune. Structure. 2020
12(2):72–6. 10.30540/sae-2020-008. Search in Google Scholar

[53] Hajkova K, Smilauer V, Jendele L, Červenka J. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng Struct. 2018
174:768–77. Search in Google Scholar

[54] Trąmpczyński W, Goszczyńska B, Bacharz M. Acoustic emission for determining early age concrete damage as an important indicator of concrete quality/condition before loading. Materials. 2020
13(16):3523. 10.3390/ma13163523. Search in Google Scholar

[55] Świt G. Acoustic emission method for locating and identifying active destructive processes in operating facilities. Appl Sci. 2018
8(8):1295. 10.3390/app8081295. Search in Google Scholar

[56] Bacharz K, Raczkiewicz W, Bacharz M, Grzmil W. Manufacturing errors of concrete cover as a reason of reinforcement corrosion in a precast element—case study. Coatings. 2019
9(11):702. 10.3390/coatings9110702. Search in Google Scholar

[57] Tworzewski P. Impact of concrete cover thickness deviations on the expected durability of reinforced concrete structures. Constr Rev. 2017
11:52–5 (in polish). Search in Google Scholar

[58] Otieno M, Ikotun J, Ballim Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Constr Build Mater. 2019
198:172–81. 10.1016/j.conbuildmat.2018.11.215. Search in Google Scholar

[59] Raczkiewicz W, Wójcicki A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure – galvanostatic pulse method. In: Proceedings of the 26th International Conference on Metallurgy and Materials. Brno, Czech
2017. Search in Google Scholar

[60] GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (Accessed on 28 Sep-tember 2019). Search in Google Scholar

[61] Brodnan M, Koteš P, Bahleda F, Šebök M, Kučera M, Kubissa W. Using non-destructive methods for measurement of reinforcement corrosion in practice. Prot Corros. 2017
3:55–8. 10.15199/40.2017.3.1. Search in Google Scholar

[62] Helal J, Sofi M, Mendis P. Non-destructive testing of concrete: a review of methods. Electron J Struct Eng. 2015
14(1):97–105. Search in Google Scholar

[63] Nikoo M, Sadowski Ł, Nikoo M. Prediction of the corrosion current density in reinforced concrete using a self-organizing feature map. Coatings. 2017
7(10):1–14. 10.3390/coatings7100160. Search in Google Scholar

[64] Zhu XE, Dai MX. A discuss on basing half-cell potential method for estimating steel corrosion rate in concrete. Appl Mech Mater. 2012
166–169:1926–30. 10.4028/www.scientific.net/AMM.166-169.1926. Search in Google Scholar

[65] Jaśniok M, Jaśniok T. Evaluation of maximum and minimum corrosion rate of steel rebars in concrete structures, based on laboratory measurements on drilled cores. Procedia Eng. 2017
193:486–93. 10.15199/40.2019.8.1. Search in Google Scholar

[66] Rengaraju S, Neelakantan L, Pillai R. Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems – an attempt and challenges. Electrochim Acta. 2019
308:131–41. 10.1016/j.electacta.2019.03.200. Search in Google Scholar

[67] Vedalakshmi R, Balamurugan L, Saraswathy V, Kim S-H, Ann KY. Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: laboratory vs field studies. KSCE J Civ Eng. 2010
14:867–77. 10.1007/s12205-010-1023-6. Search in Google Scholar

[68] Tworzewski P, Raczkiewicz W, Grzmil W, Czapik P. Condition assessment of selected reinforced concrete structural elements of the bus station in Kielce. MATEC Web Conf. 2019
284:06007. 10.1051/matecconf/201928406007. Search in Google Scholar

[69] Raczkiewicz W, Wójcicki A. Some aspects of the reinforcing steel corrosion level prediction in concrete using electrochemical method. Weld Technol Rev. 2017
89(11):28–33. 10.26628/wtr.v89i11.830. Search in Google Scholar

[70] PN-EN 206 + A1:2016-12 Concrete – specification, qualities, production and conformity. Warsaw, Poland: Polish Committee for Standardization
2017. Search in Google Scholar

[71] PN-EN 12390-3: 2002 Testing of concrete – Part 3: compressive strength of concrete specimens. Warsaw, Poland: Polish Committee for Standardization
2008. Search in Google Scholar