Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108950] Artykuł:

Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion

Czasopismo: Materials   Tom: 14, Zeszyt: 16
ISSN:  1996-1944
Opublikowano: Sierpień 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport34140.00140.00  
Peter Koteš Niespoza "N" jednostki33.00.00  
Petr Konečný Niespoza "N" jednostki33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

reinforcement corrosion  chloride ions  freezing and thawing cycles  cement type  air-entraining agent  galvanostatic pulse technique 



Abstract:

The concrete cover is the basic protection of the reinforcement against the influence of external factors that may lead to its corrosion. Its effectiveness depends mainly on the composition of the concrete mix, including the cement used. Depending on external environmental factors that may aggressively affect the structure, various types of cements and concrete admixtures are recommended. The paper presents the results of tests that allow us to assess the effect of the type of cement used and the air-entraining agent on the effectiveness of the concrete cover as a layer protecting the reinforcement against corrosion. In order to initiate the corrosion process, the reinforced concrete specimens were subjected to cycles of freezing and thawing in a sodium chloride solution. The degree of advancement of the corrosion process was investigated using the electrochemical galvanostatic pulse technique. Additionally, the microstructure of specimens taken from the cover was observed under a scanning electron microscope. The research has shown that in the situation of simultaneous action of chloride ions and freezing cycles, in order to effectively protect the reinforcement against corrosion, the application of both blast-furnace slag cement and an air-entraining agent performed the best.



B   I   B   L   I   O   G   R   A   F   I   A
References
Green, W.
Chess, P. Durability of Reinforced Concrete Structures, 1st ed.
Informa: London, UK, 2019. [Google Scholar]
Ściślewski, Z. Durability of Reinforced Concrete Structures
Arkady: Warsaw, Poland, 1999. [Google Scholar]
Bertolini, L.
Elsener, B.
Pedeferri, P.
Polder, R. Corrosion of Steel in Concrete, 2nd ed.
Wiley: Weinheim, Germany, 2004. [Google Scholar]
Kurdowski, W. Cement and Concrete Chemistry
Springer: Dordrecht, The Nederlands, 2014. [Google Scholar] [CrossRef]
Verma, S.K.
Bhadauria, S.S.
Akhtar, S. Monitoring corrosion of steel bars in reinforced concrete structures. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
Yeomans, S.R. Galvanized steel reinforcement. In Corrosion of Steel in Concrete Structures
Elsevier: Berlin/Heidelberg, Germany, 2016
pp. 111–129. [Google Scholar]
Jaśniok, M.
Kołodziej, J.
Gromysz, K. An 18-month analysis of bond strength of hot-dip galvanized reinforcing steel B500SP and S235JR+AR to chloride contaminated concrete. Materials 2021, 14, 747. [Google Scholar] [CrossRef] [PubMed]
Jaśniok, M.
Sozańska, M.
Kołodziej, J.
Chmiela, B. A two-year evaluation of corrosion-induced damage to hot galvanized reinforcing steel b500sp in chloride contaminated concrete. Materials 2020, 13, 3315. [Google Scholar] [CrossRef]
Manalo, A.
Maranan, G.
Benmokrane, B.
Cousin, P.
Alajarmeh, O.
Ferdous, W.
Liang, R.
Hota, G. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cem. Concr. Compos. 2020, 109, 103564. [Google Scholar] [CrossRef]
Khotbehsara, M.M.
Manalo, A.
Aravinthan, T.
Ferdous, W.
Nguyen, K.T.
Hota, G. Ageing of particulate-filled epoxy resin under hygrothermal conditions. Constr. Build. Mater. 2020, 249, 118846. [Google Scholar] [CrossRef]
Thamrin, R. Effect of end anchorage length and stirrup ratio on bond and shear capacity of concrete beams with nonmetallic reinforcement. J. Eng. Sci. Technol. 2016, 11, 768–787. [Google Scholar]
Babiak, I. Research of non-metal composite basalt reinforcement of periodic profile and prospects of its use. Dorogi Mosti 2021, 2021, 144–157. [Google Scholar] [CrossRef]
Mosley, C.P.
Tureyen, A.K.
Frosch, R.J. Bond strength of nonmetallic reinforcing bars. Aci. Struct. J. 2008, 105, 634–642. [Google Scholar]
Ekenel, M.
y Basalo, F.D.C.
Nanni, A. Fiber-Reinforced Polymer Reinforcement for Concrete Members, ACI Committee 440 is Taking the Next Step toward Building Code Compliance. 2021. Available online: www.concreteinternational.com (accessed on 2 January 2021).
Raczkiewicz, W. Effect of concrete addition of selected micro-fibers on the reinforcing bars corrosion in the reinforced concrete specimens. Adv. Mater. Sci. 2016, 16, 38–46. [Google Scholar] [CrossRef]
Ye, H.
Jin, N. Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: A review and perspective. Comput. Concr. 2019, 23, 107–119. [Google Scholar] [CrossRef]
Czarnecki, L.
Emmons, P.H. Repair and Protection of Concrete Structures
SPC: Krakow, Poland, 2002. [Google Scholar]
Luo, D.
Li, Y.
Li, J.
Lim, K.-S.
Nazal, N.A.M.
Ahmad, H. A recent progress of steel bar corrosion diagnostic techniques in rc structures. Sensors 2018, 19, 34. [Google Scholar] [CrossRef]
Jaśniok, M.
Jaśniok, T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area. Procedia Eng. 2017, 193, 431–438. [Google Scholar] [CrossRef]
CEN. PN-EN 1992-1-1:2008 Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings
European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
Owsiak, Z.
Grzmil, W. The evaluation of the influence of mineral additives on the durability of self-compacting concretes. KSCE J. Civ. Eng. 2014, 19, 1002–1008. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Grzmil, W. Assessment of the impact of cement type on the process of concrete carbonation and reinforcement corrosion in reinforced concrete specimens. Cem. Lime Concr. 2017, 4, 311–319. [Google Scholar]
Aitcin, J.C. High-Performance Concrete
E. & F.N. Spon: London, UK, 1998. [Google Scholar]
Małolepszy, J. Durability of concretes made of slag cements. In Proceedings of the Scientific-Technical Conference, Szczyrk, Poland, 17–21 May 2002
pp. 225–244. [Google Scholar]
Giergiczny, Z. Cements with mineral additives as a component of durable concrete. Eng. Constr. 2010, 66, 5–6, 275–279. [Google Scholar]
Deja, J. Corrosion durability of binders with different content of granulated blast furnace slag. Cement. Lime. Concr. 2007, 74, 280–283. [Google Scholar]
Liu, J.
Jiang, Z.
Zhao, Y.
Zhou, H.
Wang, X.
Zhou, H.
Xing, F.
Li, S.
Zhu, J.
Liu, W. Chloride distribution and steel corrosion in a concrete bridge after long-term exposure to natural marine environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef]
Wang, Y.
Liu, C.
Li, Q.
Wu, L. Chloride ion concentration distribution characteristics within concrete covering-layer considering the reinforcement bar presence. Ocean Eng. 2019, 173, 608–616. [Google Scholar] [CrossRef]
Kuziak, J.
Woyciechowski, P.P.
Kobyłka, R.
Wcisło, A. The content of chlorides in blast-furnace slag cement as a factor affecting the diffusion of chloride ions in concrete. MATEC Web Conf. 2018, 163, 05007. [Google Scholar] [CrossRef]
Coppola, L.
Coffetti, D.
Crotti, E.
Gazzaniga, G.
Pastore, T. Chloride Diffusion in Concrete Protected with a Silane-Based Corrosion Inhibitor. Materials 2020, 13, 2001. [Google Scholar] [CrossRef] [PubMed]
Hájková, K.
Šmilauer, V.
Jendele, L.
Červenka, J. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng. Struct. 2018, 174, 768–777. [Google Scholar] [CrossRef]
Rusin, Z. Technology of Frost-Resistant Concrete
SPC: Krakow, Poland, 2002. [Google Scholar]
Czarnecki, L.
Deja, J.
Flaga, K.
Kurdowski, W.
Małolepszy, J.
Radomski, W.
Śliwiński, J. Concrete frost resistance in bridge structures. Constr. Technol. Archit. 2015, 69, 66–69. [Google Scholar]
Wawrzeńczyk, J.
Molendowska, A.
Juszczak, T. Determining k-value with regard to freeze-thaw resistance of concretes containing GGBS. Materials 2018, 11, 2349. [Google Scholar] [CrossRef] [PubMed]
Raczkiewicz, W. Influence of the air-entraining agent in the concrete coating on the reinforcement corrosion process in case of simultaneous action of chlorides and frost. Adv. Mater. Sci. 2018, 18, 13–19. [Google Scholar] [CrossRef]
GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 20 March 2014).
Helal, J.
Sofi, M.
Mendis, P. Non-destructive testing of concrete: A review of methods. Electron. J. Struct. Eng. 2015, 14, 97–105. [Google Scholar]
Hoła, J.
Bien, J.
Sadowski, L.
Schabowicz, K. Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 87–96. [Google Scholar] [CrossRef]
Raczkiewicz, W. Building Diagnostics. Selected Methods of Materials as Well as Elements and Structures Test
Kielce University of Technology: Kielce, Poland, 2019. [Google Scholar]
Klinghoffer, O. In situ monitoring of reinforcement corrosion by means of electrochemical methods. Nord. Concr. Res. 1995, 1, 1–13. [Google Scholar]
Elsner, B.
Klinghoffer, O.
Frolund, T.
Rislund, E.
Schiegg, Y.
Böhni, H. Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In Proceedings of the International Conference Repair of Concrete Structures, Svolvaer, Norway, 28–30 May 1997. [Google Scholar]
Frølund, T.
Klinghoffer, O.
Poulsen, E. Rebar Corrosion Rate Measurements for Service Life Estimates. In Proceedings of the ACI Fall Convention, Toronto, ON, Canada, 15 October 2000. [Google Scholar]
Vedalakshmi, R.
Balamurugan, L.
Saraswathy, V.
Kim, S.-H.
Ann, K.Y. Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs. field studies. KSCE J. Civ. Eng. 2010, 14, 867–877. [Google Scholar] [CrossRef]
ASTM. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. In American Society of Testing and Materials
ASTM: West Conshohocken, PA, USA, 2009. [Google Scholar]
Raczkiewicz, W.
Wójcicki, A. Some aspects of the reinforcing steel corrosion level prediction in concrete using electrochemical method. Weld. Technol. Rev. 2017, 89, 11. [Google Scholar] [CrossRef]
Tworzewski, P.
Raczkiewicz, W.
Czapik, P.
Tworzewska, J. Diagnostics of concrete and steel in elements of an historic reinforced concrete structure. Materials 2021, 14, 306. [Google Scholar] [CrossRef]
Ghosh, P.
Tran, Q. Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 2014, 9, 119–132. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Kossakowski, P.G. Electrochemical diagnostics of sprayed fiber-reinforced concrete corrosion. Appl. Sci. 2019, 9, 3763. [Google Scholar] [CrossRef]
Tran, Q.
Ghosh, P.
Lehner, P.
Konečný, P. Determination of time dependent diffusion coefficient aging factor of HPC mixtures. Key Eng. Mater. 2020, 832, 11–20. [Google Scholar] [CrossRef]
Zhu, F.
Ma, Z.
Zhao, T. Influence of freeze-thaw damage on the steel corrosion and bond-slip behavior in the reinforced concrete. Adv. Mater. Sci. Eng. 2016, 2016, 1–12. [Google Scholar] [CrossRef]