Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108790] Artykuł:

High-power acoustic fire extinguisher with artificial intelligence platform

Czasopismo: International Journal of Computational Vision and Robotics  
ISSN:  1752-9131
Opublikowano: 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jacek Wilk-Jakubowski orcid logo WEAiIKatedra Systemów Informatycznych *Niezaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne2510.005.00  
Paweł Stawczyk orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Niespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne2510.00.00  
Stefan Ivanov Niespoza "N" jednostki25.00.00  
Stanko Stankov Niespoza "N" jednostki25.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

acoustic extinguisher  acoustic wave fire suppression  deep neural network  DNN  fire detection  fire retardation  intelligent sensor. 



Abstract:

Nowadays, innovative flame extinguishing techniques are still being sought that do not threaten the environment and do not damage the extinguished elements. One of them seems to be the acoustic method. Research is being conducted in Europe, America, and Asia into the possibility of using acoustic waves to extinguish flames. This article presents the original measurement results showing the extinguishing possibilities with a sinusoidal waveform and sinusoidal waveform modulated with a square waveform for the three analysed frequencies (15 Hz, 17 Hz and 20 Hz). A high-powered acoustic extinguisher was applied to extinguish the flames. Such a fire extinguisher may be equipped with an artificial intelligence module. Deep neural networks (DNN) were used for flame detection. Results from the training networks were described, as well as the hardware architecture employed. Such an intelligent module, which allows an acoustic extinguisher to be automatically activated when flames are detected, is particularly useful when traditional sensors are not available.



B   I   B   L   I   O   G   R   A   F   I   A
References:
Atay, H.Y. and Çelik, E. (2010) 'Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant', Polymer Composites, Vol. 31, No. 10, pp.1692-1700.
Atay, H.Y. and Çelik, E. (2013) 'Mechanical properties of flame-retardant huntite and hydromagnesite-reinforced polymer composites', Polymer-Plastics Technology and Engineering, Vol. 52, No. 2, pp.182-188.
Atay, H.Y. and Çelik, E. (2014) 'Multifunctional polymer composites: antibacterial, flame retardant, radar absorbing and self-healing', Journal of Composite Materials, Vol. 49, No. 20, pp.2469-2482.
Bong-Young, K., Myung-Jin, B. and Seong-Geon, B. (2017) 'A study on suitability of sound fire extinguisher in duct environment', International Journal of Applied Engineering Research, Vol. 12, No. 24, pp.15796-15800.
Dadashov, I., Loboichenko, V. and Kireev, A. (2018a) 'Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products', Pollution Research, Vol. 37, No. 1, pp.63-77.
Dadashov, I., Loboichenko, V. and Kireev, A. (2018b) 'Comparative assessment of environmental damage when using gel forming systems of different composition in combustible liquids extinguishing', Вісник КрНУ імені Михайла Остроградського, Vol. 1, No. 108, pp.123-129.
DARPA Sound Based Fire Extinguisher (2012) 16 July [online] https://www.extremetech.com/extreme/132859-darpa-creates-sound-based-fire-extinguisher (accessed 30 March 2020).
Eun-Young, Y. and Myung-Jin, B. (2017) 'A study on the directionality of sound fire extinguisher in electric fire', Convergence Research Letter of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 3, No. 4, pp.1449-1452.
Foley, D. and O’Reilly, R. (2018) 'An evaluation of convolutional neural network models for object detection in images on low-end devices', Proceedings for the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, pp.350-361.
Friedman, A.N., Hughes, J., Danis, P.I., Fiola, G.J., Barnes, C.A. and Stoliarov, S.I. (2018) 'Acoustically enhanced water mist suppression of heptane fueled flames', Fire Technology, Vol. 54, pp.1829-1840.
Grove AI HAT for Edge Computing Product Details (2021) [online] https://www.seeedstudio.com/Grove-AI-HAT-for-Edge-Computing-p-4026.html (accessed 16 April 2021).
Ivanov, S., Stankov, S., Wilk-Jakubowski, J. and Stawczyk, P. (2020) 'The using of deep neural networks and acoustic waves modulated by triangular waveform for extinguishing fires', International Workshop on New Approaches for Multidimensional Signal Processing NAMSP 2020, Sofia, Bulgaria, 9-11 July, New Approaches for Multidimensional Signal Processing, 'Smart Innovation, Systems and Technologies' series, 1st ed., Vol. 216, Springer, Berlin/Heidelberg, Germany.
Janku, P., Kominkova Oplatkova, Z. and Dulik, T. (2018) 'Fire detection in video stream by using simple artificial neural network', Mendel, Vol. 24, No. 2, pp.55-60.
Jensen, G. (2006) Manual Fire Extinguishing Equipment for Protection of Heritage, COWI AS, Oslo.
Kendryte Datasheet (2019) [online] https://github.com/kendryte/kendryte-doc-datasheet (accessed 25 March 2020).
Kurup, R. (2014) 'Vision based fire flame detection system using optical flow features and artificial neural network', International Journal of Science and Research, Vol. 3, No. 10, pp.2161-2168.
Laganiere, R. (2017) OpenCV 3 Computer Vision Application Programming Cookbook, 3rd ed., Packt Publishing, Birmingham.
Loboichenko, V., Strelets, V., Gurbanova, M., Morozov, A., Kovalov, P., Shevchenko, R., Kovalova, T. and Ponomarenko, R. (2019) 'Review of the environmental characteristics of fire extinguishing substances of different composition used for fires extinguishing of various classes', Journal of Engineering and Applied Sciences, Vol. 14, No. 16, pp.5925-5941.
Marek, M. (2013) 'Wykorzystanie ekonometrycznego modelu klasycznej funkcji regresji liniowej do przeprowadzenia analiz ilościowych w naukach ekonomicznych', Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, Vol. 2, pp.214-220.
Mihelj, M., Novak, D. and Beguš, S. (2013) Virtual Reality Technology and Applications (Part of the Intelligent Systems, Control and Automation: Science and Engineering Book Series), Springer, Dordrecht.
Myth Busters (2007) Voice Flame Extinguisher, Episode 76 [online] https://mythresults.com/episode76 (accessed 30 March 2020).
Myung-Sook, K. and Myung-Jin, B. (2017) 'A study on a fire extinguisher with sound focus', International Information Institute, Vol. 20, No. 6, pp.4055-4062.
Niegodajew, P., Gruszka, K., Gnatowska, R. and Sofer, M. (2018a) 'Application of acoustic oscillations in flame extinction in a presence of obstacle', XXIII Fluid Mechanics Conference, IOP Conf. Series Journal of Physics (Conf. Series 1101/2018), Zawiercie, Poland, 9-12 September.
Niegodajew, P., Łukasiak, K., Radomiak, H., Musiał, D., Zajemska, M., Poskart, A. and Gruszka, K. (2018b) 'Application of acoustic oscillations in quenching of gas burner flame', Combustion and Flame, Vol. 194, pp.245-249 [online] https://www.sciencedirect.com/science/article/abs/pii/S0010218018302013.
Porowski, R., Lesiak, P. and Teodorczyk, A. (2013) 'Analiza zjawiska boilover podczas pożarów cieczy naftopochodnych magazynowanych w zbiornikach', Przemysł Chemiczny, Vol. 92, No. 4, pp.518-521.
Radomiak, H., Mazur, M., Zajemska, M. and Musiał, D. (2015) 'Gaszenie płomienia dyfuzyjnego przy pomocy fal akustycznych', Bezpieczeństwo i Technika Pożarnicza, Vol. 40, No. 4, pp.29-38.
Radwan, K. and Rakowska, J. (2011) 'Analiza skuteczności zastosowania wodnych roztworów mieszanin koncentratów pianotwórczych do gaszenia pożarów cieczy palnych', Przemysł chemiczny, Vol. 90, No. 12, pp.2118-2121.
RISC-V: History of RISC-V (2020) [online] https://riscv.org/about/history (accessed 1 April 2020).
Robertson, S. and Tran, V. (2016a) Methods and Systems for Disrupting Phenomena with Waves, [US], No application: W02016/086068.
Robertson, S. and Tran, V. (2016b) Wave Extinguisher [online] https://ece.gmu.edu/~ppach/ ECE_Awards/Posters/S-15-I.pdf (accessed 1 April 2020).
Rudy, W., Dąbkowski, A., Porowski, R. and Teodorczyk, A. (2013) 'Experimental and numerical study of spontaneous ignition of hydrogen-methane jets in air', XXIV International Colloquium on the Dynamics of Explosions and Reactive Systems, Taiwan, China, 28 July-2 August.
Sai, R.T. and Sharma, G. (2017) 'Sonic Fire Extinguisher', Pramana Research Journal, Vol. 8, pp.337-346.
Šerić, L., Stipanicev, D. and Krstinić, D. (2018) 'ML/AI in intelligent forest fire observer network', 3rd EAI International Conference on Management of Manufacturing Systems, Dubrovnik [online] https://eudl.eu/pdf/10.4108/eai.6-11-2018.2279681 (accessed 22 March 2020).
Stawczyk, P. and Wilk-Jakubowski, J. (2021) 'Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher', Open Engineering (Central European Journal of Engineering), Vol. 11, No. 1, pp.349-355.
Szegedy, Ch., Toshev, A. and Erhan, D. (2013) 'Deep neural networks for object detection', in Advances in Neural Information Processing Systems, Vol. 26, pp.1-9.
Tofiło, P., Węgrzyński, W. and Porowski, R. (2016) 'Hand calculations, zone models and CFD - areas of disagreement and limits of application in practical fire protection engineering', XI Conference on Performance-Based Codes and Fire Safety Design Methods, Warszawa, Poland, 23-25 May.
Weng, L. (2017) Object Detection for Dummies Part 3: R-CNN Family [online] https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html#roi-pooling (accessed 28 March 2020).
Węsierski, T., Wilczkowski, S. and Radomiak, H. (2013) 'Wygaszanie procesu spalania przy pomocy fal akustycznych', Bezpieczeństwo i Technika Pożarnicza, Vol. 30, No. 2, pp.59-64.
Wilczkowski, S., Szecówka, L., Radomiak, H. and Moszoro, K. (1999) Urządzenie do gaszenia płomieni falami akustycznymi (System for Suppressing Flames by Acoustic Waves), Patent, PAT.177478, No application: P.311910.
Wilczkowski, S., Szecówka, L., Radomiak, H. and Moszoro, K. (2000) Sposób gaszenia płomieni falami akustycznymi (The Method of Extinguishing Flames with Acoustic Waves), Patent, PAT.177792, No application: P.311909.
Wilk-Jakubowski, G., Harabin, R. and Ivanov, S. (2020a) Robotics in Crisis Management: A Review of the Literature, Article unpublished, University of Social Sciences in Łódź and Varna University of Management (submitted for publication: Technology in Society).
Wilk-Jakubowski J., Stawczyk, P., Ivanov, S. and Stankov, S. (2020b) 'The using of deep neural networks and natural mechanisms of acoustic waves propagation for extinguishing flames', International Journal of Computational Vision and Robotics, in press, DOI: 10.1504/ IJCVR.2021. 10037050.
Wilk-Jakubowski, G. (2011) 'Wpływ technologii informatyczno-komunikacyjnych na bezpieczeństwo współczesnych społeczeństw', III Ogólnopolska Konferencja Naukowa Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, Kielce, Poland, 15 September.
Wilk-Jakubowski, J. (2018a) 'Measuring rain rates exceeding the polish average by 0.01%', Polish Journal of Environmental Studies, Vol. 27, No. 1, pp.383-390.
Wilk-Jakubowski, J. (2018b) 'Predicting satellite system signal degradation due to rain in the frequency range of 1 to 25 GHz', Polish Journal of Environmental Studies, Vol. 27, No. 1, pp.391-396.
Wilk-Jakubowski, J. (2018c) 'Total signal degradation of polish 26-50 GHz satellite systems due to rain', Polish Journal of Environmental Studies, Vol. 27, No. 1, pp.397-402.
Wilk-Jakubowski, J. (2018d) Urządzenie do gaszenia płomieni falami akustycznymi (Device for Flames Suppression with Acoustic Waves), Patent, PAT.233025, No application: P.427999.
Wilk-Jakubowski, J. (2018e) Urządzenie do gaszenia płomieni falami akustycznymi (Device for Flames Suppression with Acoustic Waves), Patent, PAT.233026, No application: P.428002.
Wilk-Jakubowski, J. (2018f) Urządzenie do gaszenia płomieni falami akustycznymi (System for Suppressing Flames by Acoustic Waves), Utility Model, RWU.070441, No application: W.127019.
Wilk-Jakubowski, G. (2019a) 'Normative dimension of crisis management system in the Third Republic of Poland in an international context', Organizational and Economic Aspects, Wydawnictwo Społecznej Akademii Nauk, Łódź-Warszawa.
Wilk-Jakubowski, J. (2019b) Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves), Patent, PAT.234266, No application: P.428615.
Wilk-Jakubowski, J. (2020) 'A review on information systems engineering using VSAT networks and their development directions', Yugoslav Journal of Operations Research, p.15, Online first, DOI: 10.2298/YJOR200215015W.
Wilk-Jakubowski, J., Stawczyk, P., Ivanov, S. and Stankov, S. (2019) Control of Acoustic Extinguisher with Deep Neural Networks for Fire Detection, Article unpublished, Kielce University of Technology and Technical University in Gabrovo (submitted for publication: Elektronika ir Elektrotechnika).
Wnęk, W., Kubica, P. and Basiak, M. (2012) 'Standardy projektowania urządzeń gaśniczych tryskaczowych - porównanie głównych parametrów', Bezpieczeństwo i Technika Pożarnicza, Vol. 27, No. 3, pp.83-96.
YOLO: Real-Time Object Detection (2019) [online] https://pjreddie.com/darknet/yolo (accessed 28 March 2020).
Zhang, X. (2018) Simple understanding of Mask RCNN [online] https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95 (accessed 30 March 2020).