Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108720] Artykuł:

Shear Capacity of Reinforced Concrete Beams under Monotonic and Cyclic Loads: Experiments and Computational Models

Czasopismo: Materials   Tom: 14, Zeszyt: 15, Strony: 1-29
ISSN:  1996-1944
Opublikowano: Sierpień 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Kamil Bacharz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Barbara Goszczyńska orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

reinforced concrete beams  support zone  shear load capacity  calculation models  shear reinforcement  cyclic load 



Abstract:

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.



B   I   B   L   I   O   G   R   A   F   I   A
1. Aguilar, V.
Barnes, R.
Nowak, A. Shear Strength of Concrete Members: Challenges, Recent Developments and Possibilities.
Adv. Civ. Eng. Technol. 2020, 1, 4.
2. Godycki-Ćwirko, T. Ścinanie w Żelbecie
Arkady: Warszwa, Poland, 1968. (In Polish).
3. Pre-norma Konstrukcji Betonowych—Fib Model Code 2010, Tom 2
fib CEB-FIP Polish Group
Polski Cement: Kraków, Poland 2014

Volume 2, p. 45. (in Polish).
4. ACI 318-19 Building Code Requirements for Structural Concrete with Commentary
American Concrete Institute: Farmington Hills,
MI, USA, 2019.
5. Pawelska-Mazur, M.
Kaszyńska, M. Mechanical Performance and Environmental Assessment of Sustainable Concrete Recycled
End-of-Life Tyre Fibers. Materials 2021, 14, 256.
6. Jagadesh, P.
Juan-Valdes, A.
Guerra-Romero, M.I.
Pozo, J.M.M.
Garicia-Gonzalez, J.
Martinez-Garcia, R. Effect of Design
Parameters on Compressive and Split Tensile Strength of Self-Compacting Concrete with Recycled Aggregate: An Overview.
Appl. Sci. 2021, 11, 6028.
7. Lee, E.
Ko, J.
Yoo, J.
Park, S.
Nam, J. Analysis of the Aggregate Effect on the Compressive Strength of Concrete Using Dune
Sand. Appl. Sci. 2021, 11, 1952.
8. Kaszyńska, M.
Skibicki, S. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature
Development of High-Performance Concrete. In IOP Conference Series: Earth and Environmental Science
IOP Publishing: Bristol,
UK, 2017
Volume 95.
9. Ju, H.
Yerzhanov, M.
Serik, A.
Lee, D.
Kim, J.R. Statistical and Reliability Study on Shear Strength of Recycled Coarse Aggre-
gate Reinforced Concrete Beams. Materials 2021, 14, 3321.
10. Goszczyńska, B.
Trąmpczyński, W.
Bacharz, M.
Bacharz, K.
Tworzewska, J.
Tworzewski, P. Doświadczalna analiza
odkształceń przestrzennych belek żelbetowych z zastosowaniem skanera optycznego 3D. Inżynieria I Bud. 2014, 3, 156–159. (In
Polish).
Materials 2021, 14, 4092 28 of 29

11. Trąmpczyński, W.
Goszczyńska, B.
Tworzewska, J. Analysis of Crack Width Development in Reinforced Concrete Beams.
Materials 2021, 14, 3043.
12. Godowska, M. Automatyzacja Badań belek Żelbetowych z Zastosowaniem Zestawu Pomiarowego HBM, Aktualne Badania i Analizy z
Inżynierii Lądowej
Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013
pp. 225–231. (In Polish).
13. Świątkiewicz, A. Fotogrametria
PWN: Warszawa, Poland, 1979. (In Polish).
14. PN-EN-1992-1-1:2008 Eurokod 2: Projektowanie Konstrukcji z Betonu-Część 1: Reguły Ogólne i Reguły dla Budynków
PKN: Warszawa,
Poland, 2008. (In Polish).
15. PN-B-03264:1999-Konstrukcje Betonowe, Żelbetowe i Sprężone-Obliczenia Statyczne i Projektowanie
PKN: Warszawa, Poland, 1999.
(In Polish).
16. PN-B-03264:2002-Konstrukcje Betonowe, Żelbetowe i Sprężone-Obliczenia Statyczne i Projektowanie
PKN: Warszawa, Poland, 2002.
(In Polish).
17. DIN 1045-1 Tragwerke aus Beton, Stahlbeton und Spannbeton–Teil 1: Bemessung und Konstruktion
Deutsches Institut für Normung:
Berlin, Germany, 2008. (In German).
18. ACI 318-14 Building Code Requirements for Structural Concrete with Commentary
American Concrete Institute: Farmington Hills,
MI, USA, 2014.
19. Ahmad, A.
Baker, A.L.L. A Statically Indeterminate Truss Mechanism for Reinforced Concrete Beams, Filing by Shear. Ph.D.
Thesis, University of London, London, UK, 1963.
20. Godycki-Ćwirko, T. Mechanika Betonu
Arkady: Warszawa, Polnad, 1982. (In Polish).
21. Leonhardt, F.
Walther, R. Beitrage zur Behandlung der Schubprobleme im Stahlbetonbau, 4. fortsetzung des Kapitals II: Ver-
suchsberichte, Beton und Stahlbetonbau, 1962 (In German).
22. Kupfer, H. Erweiterung der Mörsches-Fachwerkanalogie mit Hilfe des Prinzips vom Minimum der Formänderungsarbeit. In
Bulletin d’Inoformation
CEB: Paris, France, 1964
p. 40. (In German).
23. Digler, W. Einfluss der Querkraft auf Die Traglast Statisch Unbestimmt Gelagerter Stahlbeton-Stabtragwerke
Diss T.H.: Stuttgart, Ger-
many, 1965. (In German).
24. Rusch, H. Über die Grenzen der Anwendbarkeit der Fachwerkanalogie bei der Berechnung der Schubfestigkeit von Stahlbet-
onbalken. In Ehrenbuch Prof. Ing. F. Campus, Amicet Alumni, 1964. (In German).
25. PAN, S.K.B.K. Podstawy Projektowania Konstrukcji Żelbetowych i Sprężonych Według Eurokodu 2
Dolnośląskie Wydawnictwo
Edukacyjne: Wrocław, Poland, 2006. (In Polish).
26. Lipski, A. Poutres a âme mince en béton armé on precontraint. In Annales des Travaux Publiés de Belgique
1971
(In French).
27. Boriszański, M.S. Rasczotot Ognutych Stierżni i Chomutow w Izgibajemnych Żelzaobietonnych Elemirntach po Stadii Razruszenia

Strojizdat: Moskwa, Russia, 1946. (In Russian).
28. Kani, G. The Riddle of Shear Failure and Its Solution. ACI J. 1964, 61, 441–468.
29. Kani, G. Basic Factor Concerning Shear Failure. J. Proc. 1966, 63, 675–692.
30. PN-B-03264:1984 Konstrukcje Betonowe, Żelbetowe i Sprężone. Obliczenia Statyczne i Projektowe
Wydawnictwo Normalizacyjne
ALFA: Warszawa, Poland, 1984. (In Polish).
31. Collins, P.M.
Mitchell, D.
Adebar, P.
Vecchio, F.J. A General Shear Design Method. ACI Struct. J. 1996, 93, 36–45.
32. Vecchio, F.J.
Collins, M.P. The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI
J. Proc. 1986, 83, 219–231.
33. Bentz, E.C.
Vecchio, F.J.
Collins, M.P. Simplified Modified Compression Field Theory for Calculating Shear Strength of Rein-
forced Concrete Elements. ACI Struct. J. 2006, 103, 614–624.
34. Sigrist, V. Generalized Stress Field Approach for Analysis of Beams in Shear. ACI Struct. J. 2011, 108, 479–487.
35. Wójcicki, A. Strefa Przypodporowa Belek Żelbetowych w Doświadczeniu i Opisie Modelowym. Ph.D. Thesis, Politechnika
Świętorzyska, Kielce, Poland, 2000. (In Polish).
36. Goszczyński, S.
Wójcicki, A.
Bijak, I. Estymacja parametrów modelu betonu dla strefy ścinania belki żelbetowej. Bud. I
Inżynieria Sr. 2004, 37, 97–102. (In Polish).
37. Woliński, S. Wymiarowanie elementów żelbetowych metodą symulacji Monte Carlo. Inżynieria I Bud. 2002, 6, 335–337.
38. Buda-Ożóg, L. Niezawodność Konstrukcji Żelbetowych Projektowanych Metodą Strut and Tie
Oficyna Wydawnicza Politechniki
Rzeszowskiej: Rzeszów, Poland, 2019. (In Polish).
39. Chorzępa, M.
Kim, Y.J.
Yun, G.J.
Harmon, T.G.
Dyke, S. Cyclic Shear-Friction Constitutive Model for Finite Element Analysis
of Reinforced Concrete Membrane Elements. ACI Struct. J. 2011, 108, 324–331.
40. Bhatt, P.
Kader, A.M. Prediction of shear strength of reinforced concrete beams by nonlinear finite element analysis. Comput.
Struct. 1998, 68, 139–155.
41. Potisuk, T.
Higgins, C.C.
Miller, T.H.
Yim, S.C. Finite Element Analysis of Reinforced Concrete Beams with Corrosion Sub-
jected to Shear. Adv. Civ. Eng. 2011, doi:10.1155/2011/706803.
42. Arafar, M.
Alqedra, M.
An-Najjar, H. Neural Network Models for Predicting Shear Strength of Reinforced Normal and High-
strength Concrete Deep Beams. J. Appl. Sci. 2011, 11, 266–274.
43. Koo, S.
Shin, D.
Kim, C. Application of Principal Component Analysis Approach to Predict Shear Strength of Reinforced Con-
crete Beams with Stirrups. Materials 2021, 14, 3471.
44. Walrawen, J.C. Fundamental Analysis of Aggregate Interlock. J. Struct. Div. 1981, 107, 2245–2270.
Materials 2021, 14, 4092 29 of 29

45. Lantsonght, E.O.
van der Veem, C.
Walrawen, J.C. Case Study on Aggregate Interlock Capacity for the Shear Assessment of
Cracked Reinforced-Concrete Bridge Cross Sections. J. Bridge Eng. 2016, 21, 04016004.
46. Sun, C.
Chen, Q.
Xiao, J.
Ge, W. Study on aggregate interlock behavior of pre-cracked recycled aggregate concrete without
stirrups. J. Build. Eng. 2021, 39, 102257.
47. Belarbi, A.
Kuchma, D.A.
Sanders, D.H. Proposals for New One-Way Shear Equations for the 318 Building Code. Concr. Int.
2017, 39, 29–32.
48. Cladera, A.
Mari, A.
Bairan, J.-M.
Oller, E.
Ribas, C. One way Shear Design Method Based on a Multi-Action Model. Concr.
Int. 2017, 39, 40–46.
49. Mari, A.
Bairan, J.
Caldera, A.
Oller, E.
Ribas, C. Shear Flexural Strength Mechanical Model for the Design and Assessment
of Reinforced Concrete Beams. Struct. Infrastruct. Eng. 2015, 11, 1399–1419.
50. Caldera, A.
Mari, A.
Ribas, C.
Bairan, J.
Oller, E. Predicting the Shear-Flexural Strength of Slender Reinforced Concrete T and
I Shaped Beams. Eng. Struct. 2015, 101, 386–398.
51. Mari, A.
Bairan, J.M.
Caldera, A.
Oller, E. Shear Design and Assessment of Reinforced and Prestressed Concrete Beams Based
on a Mechanical Model. J. Struct. Eng. 2016, 142, 04016064.
52. Benatz, E.C.
Collins, M.P. Updating the ACI Shear Design Provisions. Concr. Int. 2017, 39, 33–38.
53. Reineck, K.H. Proposal for ACI 318 Shear Design. Concr. Int. 2017, 39, 65–70.
54. Hong-Gun Park, K.-K. C. Unified Shear Design Method of Concrete Beams Based on Compression Zone Failure Mechanism.
Concr. Int. 2017, 39, 59–63.
55. Choi, K.-K.
Park, H.-G.
Wight, J. Unified Shear Strength Model for Reinforced Concrete Beams—Part 1: Development. ACI
Struct. J. 2007, 104, 142.
56. Choi, K.-K.
Park, H.-G. Unified Shear Strength Model for Reinforced Concrete Beams—Part 2: Verification and Simplified
Method. ACI Struct. J. 2007, 104, 153.
57. Forsch, R.J.
Yu, Q.
Cusatis, G.
Bažant, Z.P. A Unified Approach to Shear Design. Concr. Int. 2017, 39, 47–52.
58. Tureyen, A.K.
Forsch, R.J. Concrete shear strength: Another prospective. Struct. J. 2003, 100, 609–615.
59. Tureyen, A.K.
Wolf, T.S.
Forsch, R.J. Shear strength of reinforced concrete T-beams without transverse reinforcement. ACI
Struct. J. 2006, 103, 656.
60. Li, Y.-A.
Hsu, T.T.
Hwang, S.-J. Shear Strength of Prestressed and Nonprestressed Concrete Beams. Concr. Int. 2017, 39, 53–57.
61. Kuo, W.W.
Hsu, T.T.C.
Hwang, S.J. Shear Strength of Reinforced Concrete Beams. ACI Struct. J. 2014, 111, 809–818.
62. Laskar, A.
Hsu, T.T.C.
Mo, Y.L. Shear strengths of Prestressed Concrete Beam Part 1: Experiments and Shear Design Equations.
ACI Struct. J. 2010, 107, 330–339.
63. Hsu, T.T.C.
Laskar, A.
Mo, Y.L. Shear Strengths of Prestressed Concrete Beams Part 2: Comparisons with ACI and AASHTO
Provisions. ACI Struct. J. 2010, 107, 340–345.
64. Kuchma, D.A.
Wei, S.
Sanders, D.H.
Belarbi, A.
Novak, L.C. Development of the One-Way Shear Design Provisions of ACI
318-19 for Reinforced Concrete. ACI Struct. J. 2019, 116, 285–295.
65. Bazant, Z.P.
Yu, Q.
Gerstle, G.
Hanson, J.
Ju, J.W. Justification of ACI 446 Proposal for Updating ACI Code Provisions for
Shear Design of Reinforced Concrete Beams. ACI Struct. J. 2007, 104, 601–610.
66. Aguilar, V.H. Realiability of Shear-Critical Reinforced Concrete Members. Ph.D. Thesis, Auburn University, Auburn, AL, USA,
2020.
67. Godycki-Ćwirko, T. Konstrukcje Betonowe, Żelbetowe i Sprężone-Komentarz Naukowy do PN-B-03264:2002–Rozdział 9–Ścinanie
ITB:
Warszawa, Poland, 2005. (In Polish).
68. Sigrist, V.
Bentz, E.
Ruiz, M.F.
Foster, S.
Muttoni, A. Background to the fib Model Code 2010 shear provisions—Part I: Beams
and slabs. Struct. Concr. J. Fib 2013, 14, 195–203.
69. Piloto, P.A.G.
Ramos-Gavilán, A.B.
Gonçalves, C.
Mesquita, L.M.R. Experimental bending tests of partially encased beams at
elevated temperatures. Fire Saf. J. 2017, 92, 23–41.
70. Ferreira, D.M.
Araújo, A.
Fonseca, E.M.M.
Piloto, P.A.G.
Pinto, J. Behaviour of non-loadbearing tabique wall subjected to fire—
Experimental and numerical analysis. J. Build. Eng. 2017, 9, 164–176.