Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108680] Artykuł:

Recognizing the temperature effect on the measurements results of the corrosion risk of plain and stainless reinforcement by the galvanostatic method

(Rozpoznanie wpływy temperatury na wyniki pomiarów zagrożenia korozyjnego zbrojenia ze stali zwykłej i nierdzewnej wykonywanych metodą galwanostatyczną)
Czasopismo: Transportation Research Procedia - Elsevier   Zeszyt: 55, Strony: 1147-1154
ISSN:  2352-1465
Opublikowano: Lipiec 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niezaliczony do "N"Inżynieria lądowa, geodezja i transport502.502.50  
Artur Wójcicki orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport502.50.00  

Grupa MNiSW:  Publikacje w czasopismach spoza listy 2019
Punkty MNiSW: 5


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

diagnostics of reinforced concrete  semi-destructive galvanostatic pulse method  environment conditions  temperature impact  reinforced concrete specimen 



Abstract:

Tests of used reinforced concrete structures by non-destructive methods are performed in natural, current environmental conditions. These conditions are constantly changing, especially the daily and annual changes in temperature and humidity can be large. Such changes may have a significant impact on the values of measurements performed with electrochemical methods, especially on exposed elements of hydrotechnical, road, rail or power lines. The article presents tests performed with the semi-destructive electrochemical polarizing method of galvanostatic pulse on specimens in the laboratory in reference to results of tests obtained on real elements. Three parameters were measured: stationary potential of the reinforcement, concrete cover resistivity and corrosion current density as a function of temperature. Based on the obtained results, a clear influence of the ambient temperature on the values of the measured parameters was found.



B   I   B   L   I   O   G   R   A   F   I   A
References
1
Bertolini L., Elsener B., Pedeferri P., Polder R.
Corrosion of steel in concrete (2nd Edition), Wiley VCH, Weinheim (2004)
Google Scholar
2
Chess P., Green W.
Durability of Reinforced Concrete Structures (1st Edition), CRC Press (2019)
Google Scholar
3
Drobiec Ł., Jasiński R., Piekarczyk A.
Diagnostics of Reinforced Concrete Structures, Methodology, Field Tests, Laboratory Tests of Concrete and Steel
PWN, Warsaw, Poland (2010)
(In Polish)
Google Scholar
4
Melchers R.
Long-Term Durability of Marine Reinforced Concrete Structures
Mar. Sci. Eng., 8 (2020), p. 290
CrossRefView Record in ScopusGoogle Scholar
5
Liu J., Jiang Z., Zhao Y., Zhou H., Wang X., Zhou H.J., Xing F., Li S., Zhu J.-H., Liu W.
Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment
Materials, 13 (2020), p. 3900
CrossRefView Record in ScopusGoogle Scholar
6
Navrátil J., Drahorád M., Ševčík P.
Assessment of Load-Bearing Capacity of Bridges
Solid State Phenom, 259 (2017), pp. 113-118
View Record in ScopusGoogle Scholar
7
Bacharz K., Raczkiewicz W., Bacharz M., Grzmil W.
Manufacturing Errors of Concrete Cover as a Reason of Reinforcement Corrosion in a Precast Element—Case Study
Coatings, 9 (2019), p. 702
CrossRefView Record in ScopusGoogle Scholar
8
Tworzewski P., Raczkiewicz W., Czapik P., Tworzewska J.
Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure
Materials, 14 (2021), p. 306
https://doi.org/10.3390/ma14020306
CrossRefGoogle Scholar
9
Hoła J., Bień J., Sadowski Ł., Schabowicz K.
Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability
Bull. Pol. Acad. Sci. Tech. Sci., 63 (2015), pp. 87-96
CrossRefView Record in ScopusGoogle Scholar
10
Schabowicz K.
Non-destructive testing of materials in civil engineering
Materials, 12 (2019), p. 3237
CrossRefGoogle Scholar
11
Helal J., Sofi M., Mendis P.
Non-destructive testing of concrete: A review of methods
Electron. J. Struct. Eng., 14.1 (2015), pp. 97-105
View Record in ScopusGoogle Scholar
12
Zybura A., Jaśniok M., Jaśniok T.
Diagnostics of Reinforced Concrete Structures
Tests on Reinforcement Corrosion and Concrete Protective Properties, PWN, Warsaw, Poland (2011)
Google Scholar
13
Raczkiewicz W.
Building Diagnostics. Selected Methods of Materials As Well As Elements and Structures Test, Kielce University of Technology, Kielce, Poland (2019)
(In Polish)
Google Scholar
14
Świt G.
Acoustic Emission Method for Locating and Identifying Active Destructive Processes in Operating Facilities
Appl. Sci., 8 (2018), p. 1295
View Record in ScopusGoogle Scholar
15
Tworzewski, P.
Goszczyńska, B. An Application of an Optical Measuring System to Reinforced Concrete Beams Analysis. In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016.
Google Scholar
16
Trąmpczyński W., Goszczyńska B., Bacharz M.
Acoustic Emission for Determining Early Age Concrete Damage as an Important Indicator of Concrete Quality/Condition before Loading
Materials, 13 (2020), p. 3523
CrossRefView Record in ScopusGoogle Scholar
17
Brodnan M., Koteš P., Bahleda F., Šebök M., Kučera M., Kubissa W.
Using non-destructive methods for measurement of reinforcement corrosion in practice
Prot. Against Corros., 3 (2017), pp. 55-58
View Record in ScopusGoogle Scholar
18
Jaśniok M., Jaśniok T.
Evaluation of Maximum and Minimum Corrosion Rate of Steel Rebars in Concrete Structures, Based on Laboratory Measurements on Drilled Cores
Procedia Eng., 193 (2017), pp. 486-493
ArticleDownload PDFView Record in ScopusGoogle Scholar
19
Jaśniok M., Jaśniok T.
Measurements on Corrosion Rate of Reinforcing Steel under various Environmental Conditions, Using an Insulator to Delimit the Polarized Area
Procedia Eng., 193 (2017), pp. 431-438
ArticleDownload PDFView Record in ScopusGoogle Scholar
20
Raczkiewicz, W.
Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure-galvanostatic pulse method, 26th International Conference On Metallurgy And Materials (METAL), Brno, Czech Republic, TANGER Ltd, 2017.
Google Scholar
21
Bäßler R., Burkert A., Frølund T., Klinghofer O.
Usage of GPM-Portable equipment for determination of corrosion stage of concrete structures
Corrosion (2003), p. 03388
View Record in ScopusGoogle Scholar
22
Frølund, T.
Jensen, F.M.
Bäßler, R. Smart structures: Determination of reinforcement corrosion rate by means of the GPT, IABMAS Congress, 362, Barcelona, Spain, 2002
Google Scholar
23
Raczkiewicz W., Wójcicki A.
Selected aspects of forecasting the level of reinforcing steel corrosion in concrete by electrochemical method
Welding Review, 89 (2017), pp. 28-33
View Record in ScopusGoogle Scholar
24
Vedalakshmi R., Balamurugan L., Saraswathy V., Kim S.-H., Ann K.Y.
Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies
KSCE Journal of Civil Engineering, 14 (6) (2010), pp. 867-877
CrossRefView Record in ScopusGoogle Scholar
25
Raczkiewicz W., Wójciki A.
Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method
Appl. Sci., 10 (3) (2020), p. 1089
https://doi.org/10.3390/app10031089
CrossRefView Record in ScopusGoogle Scholar
26
Østvik, J-M. Thermal aspects of corrosion of steel in concrete: effect of low temperature on the resistivity and the cathodic reaction rate, 2005:5
Doctoral theses at NTNU, Norwegian University of Science and Technology 2005
Google Scholar
27
Allampallewar S.B., Srividya A.
Corrosion performance of reinforced concrete member along Indian coasts: Effect of temperature & relative humidity
International Journal of Performability, 4 (3) (2008), pp. 285-292
View Record in ScopusGoogle Scholar
28
GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 20 March 2014).
Google Scholar