Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[106510] Artykuł:

Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses

(Pienistość i badania metodą spektrometrii FTIR spienionych lepiszczy asfaltowych przeznaczonych do warstw ścieralnych nawierzchni drogowych)
Czasopismo: Materials   Tom: 14(8), Zeszyt: 2055, Strony: 1-14
ISSN:  1996-1944
Opublikowano: Kwiecień 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

asfalt drogowy  asfalt modyfikowany polimerami  asfalt wysokomodyfikowany  spienianie wodą  ATR-FTIR 


Keywords:

paving grade bitumen  polymer modified bitumen  HiMA  mechanical water foaming  ATR-FTIR 



Abstract:

This study explores the effects of foaming on three selected bituminous binders: 50/70 paving grade bitumen, 45/80-55 polymer modified bitumen and 45/80-80 HiMA binder. The first part of the investigations included the evaluation of the foaming performance in terms of foaming temperature and foaming water content with the utilization of desirability functions and based on the equality of maximum expansion ratio and bitumen foam half-life. The second part of the study investigated the effects of foaming on the chemical structure of the binders using Fourier-transform infrared spectroscopy. The results of the spectroscopic measurements permitted calculation of structural indices specific to functional groups associated with bitumen oxidation, as well as those indicative of elastomeric modification. The results have shown that the different types of bitumen exhibited different foaming characteristics, which was most evident in bitumen foam half-lives, with the HiMA binder performing the best. The spectrometric measurements did not show any significant effects of foaming on the chemical structure of the evaluated binders related to oxidative stress, neither were any major changes in the PmB-specific regions found.



B   I   B   L   I   O   G   R   A   F   I   A
1. Iwanski, M.M. Chomicz-Kowalska, A. Maciejewski, K. Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen. Materials 2020, 13, doi:10.3390/ma13030654.
2. Chomicz-Kowalska, A. Maciejewski, K. Iwański, M.M. Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2021, doi:10.24425/bpasts.2021.136731.
3. Pucułek, M. Liphardt, A. Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2020, doi:10.24425/ace.2020.136489.
4. Czapik, P. Zapała-Sławeta, J. Owsiak, Z. Stępień, P. Hydration of cement by-pass dust. Constr. Build. Mater. 2020, 231, 117139, doi:10.1016/j.conbuildmat.2019.117139.
5. Remišová, E. Decký, M. Mikolaš, M. Hájek, M. Kovalčík, L. Mečár, M. Design of Road Pavement Using Recycled Aggregate. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016, doi:10.1088/1755-1315/44/2/022016.
6. Bańkowski, W. Król, J. Gałązka, K. Liphardt, A. Horodecka, R. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356, doi:10.1088/1757-899X/356/1/012009.
7. Jenkins, K.J. Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2000.
8. Woszuk, A. Franus, W. A review of the application of zeolite materials in warm mix asphalt technologies. Appl. Sci. 2017, 7, doi:10.3390/APP7030293.
9. Yin, F. Arambula, E. Bhasin, A. Workability and coatability of foamed Warm-Mix Asphalt. Asph. Pavements 2014, 745–754, doi:10.1201/b17219-91.
10. Capitão, S.D. Picado-Santos, L.G. Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr. Build. Mater. 2012, 36, 1016–1024, doi:10.1016/j.conbuildmat.2012.06.038.
11. Iwański, M.M. Chomicz-Kowalska, A. Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials 2019, 12, 3514, doi:10.3390/ma12213514.
12. Iwanski, M. Chomicz-Kowalska, A. Moisture and Frost Resistance of the Recycled Base Rehabilitated with the Foamed Bitumen Technology. Arch. Civ. Eng. 2012, 58, 185–198, doi:10.2478/v.10169-012-0011-2.
13. Chomicz-Kowalska, A. Maciejewski, K. Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. J. Clean. Prod. 2020, 258, 120517, doi:10.1016/j.jclepro.2020.120517.
14. Iwański, M. Buczyński, P. Mazurek, G. The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 763–773, doi:10.1515/bpasts-2016-0085.
15. Iwański, M. Chomicz-Kowalska, A. Application of the foamed bitumen and bitumen emulsion to the road base mixes in the deep cold recycling technology. Balt. J. Road Bridg. Eng. 2016, 11, 291–301, doi:10.3846/bjrbe.2016.34.
16. Chomicz-Kowalska, A. Stepien, J. Cost and Eco-Effective Cold In-Place Recycled Mixtures with Foamed Bitumen during the Reconstruction of a Road Section under Variable Load Bearing Capacity of the Subgrade. Proc. Eng. 2016, 161, 980–989, doi:10.1016/j.proeng.2016.08.837.
17. Yin, F. Arambula, E. Newcomb, D.E. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. 2015, 2506, 1–7, doi:10.3141/2506-01.
18. Abreu, L.P.F. Oliveira, J.R.M. Silva, H.M.R.D. Palha, D.
Fonseca, P.V. Suitability of different foamed bitumens for warm mix asphalts with increasing recycling rates. Constr. Build. Mater. 2017, 142, 342–353, doi:10.1016/j.conbuildmat.2017.03.085.
19. Abreu, L. Oliveira, J. Silva, H. Silva, C. Palha, D. Fonseca, P. Foamed bitumen: An alternative way of producing asphalt mixtures. Ciência Tecnol. Mater. 2017, 29, e198–e203, doi:10.1016/j.ctmat.2016.07.004.
20. Sánchez, D.B. Airey, G. Caro, S. Grenfell, J. Effect of foaming technique and mixing temperature on the rheological char-acteristics of fine RAP-foamed bitumen mixtures. Road Mater. Pavement Des. 2020, 21, 2143–2159, doi:10.1080/14680629.2019.1593228.
21. Maciejewski, K. Wpływ Rodzaju Dodatku i Starzenia Krótkoterminowego na Właściwości Wysokotemperaturowe Asfaltów Drogowych Przeznaczonych do Mieszanek Mineralno-Asfaltowych Wytwarzanych w Technologii „Na Ciepło” z Asfaltem Spienionym Wodą. Ph.D Thesis, Kielce University of Technology, Kielce, Poland, 2019.
22. Remišová, E. Zatkaliková, V. Schlosser, F. Study of Rheological Properties of Bituminous Binders in Middle and High Temperatures. Civ. Environ. Eng. 2016, 12, 13–20, doi:10.1515/cee-2016-0002.
23. Remišová, E. Zatkalíková, V. Evaluation of Bituminous Binder in Relation to Resistance to Permanent Deformation. Proc. Eng. 2016, 153, 584–589, doi:10.1016/j.proeng.2016.08.196.
24. Jenkins, K.J. Molenaar, A.A.A. De Groot, J.L.A. Van de Ven, M.F.C. Newcomb, D. Abadie, C. Dunning, M. Lenters, J. Christensen, D. Winford, J. et al. Foamed asphalt produced using warmed aggregates. Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess. 2002, 71, 444–478.
25. Bairgi, B.K. Tarefder, R.A. Characterization of foaming attributes to binder tribology and rheology to better understand the mechanistic behavior of foamed asphalt. Int. J. Pavement Res. Technol. 2021, 14, 13–22, doi:10.1007/s42947-020-0283-x.
26. Bairgi, B.K. Mannan, U.A. Tarefder, R.A. Tribological Evaluation for an In-Depth Understanding of Improved Workability of Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 533–545, doi:10.1177/0361198119835510.
27. Newcomb, D.E. Arambula, E. Yin, F. Zhang, J. Bhasin, A. Li, W. Zelalem, A. Properties of Foamed Asphalt for Warm Mix Asphalt Applications NCHRP Report 807 The National Academies Press: Washington, DC, USA, 2015.
28. Bairgi, B.K. Tarefder, R.A. Effect of foaming water contents on high-temperature rheological characteristics of foamed asphalt binder. In Proceedings of the International Conference on Transportation and Development 2018 American Society of Civil Engineers: Reston, VA, USA, 2018 pp. 243–251.
29. Bairgi, B.K. Mannan, U.A. Tarefder, R.A. Influence of foaming on tribological and rheological characteristics of foamed asphalt. Constr. Build. Mater. 2019, 205, 186–195, doi:10.1016/j.conbuildmat.2019.02.009.
30. Sunarjono, S. The Influence of Foamed Bitumen Characteristics on Cold-Mix Asphalt Properties. Ph.D. Thesis, Nottingham School of Civil Engineering, Transportation Engineering Centre, The University of Nottingham, Nottingham, UK, 2008.
31. Huang, B. Zhang, Y. Shu, X. Liu, Y. Penumadu, D. Ye, X.P. Neutron Scattering for Moisture Detection in Foamed Asphalt. J. Mater. Civ. Eng. 2013, 25, 932–938, doi:10.1061/(ASCE)MT.1943-5533.0000762.
32. Martinez-Arguelles, G. Giustozzi, F. Crispino, M. Flintsch, G.W. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 2014, 72, 423–433, doi:10.1016/j.conbuildmat.2014.09.024.
33. Iwański, M. Mazurek, G. Buczyński, P. Bitumen foaming optimisation process on the basis of rheological properties. Materials 2018, 11, 1854, doi:10.3390/ma11101854.
34. Yu, X. Wang, Y. Luo, Y. Impacts of water content on rheological properties and performance-related behaviors of foamed warm-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209, doi:10.1016/j.conbuildmat.2013.06.018.
35. Iwański, M. Mazurek, G. Buczyński, P. Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231, doi:10.1016/j.conbuildmat.2020.121231.
36. Hung, A.M. Goodwin, A. Fini, E.H. Effects of water exposure on bitumen surface microstructure. Constr. Build. Mater. 2017, 135, 682–688, doi:10.1016/j.conbuildmat.2017.01.002.
37. Huang, S.-C. Turner, F. Impact of water on aging. In Fundamental Properties of Asphalts and Modified Asphalts Western Research Institute, FHWA: Laramie, WY, USA, 2015.
38. West, R. Rodezno, C. Julian, G. Prowell, B. Frank, B. Osborn, L,V. Kriech, T. Field Performance of Warm Mix Asphalt Technologies NCHRP Report 779 The National Academies Press: Washington, DC, USA, 2014.
39. Błażejowski, K. Wójcik-Wiśniewska, M. Baranowska, W. Orlen Asfalt Bitumen Handbook ORLEN Asfalt sp. z o.o.: Płock, Poland, 2018.
40. Bonaquist, R. Mix Design Practices for Warm Mix Asphalt NCHRP Report 691 The National Academies Press: Washington, DC, USA, 2011.
41. Chomicz-Kowalska, A. Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, doi:10.1515/bpasts-2017-0086.
42. Chomicz-Kowalska, A. Mrugała, J. Maciejewski, K. Evaluation of foaming performance of bitumen modified with the addition of surface active agent. In Proceedings of the IOP Conference Series: Materials Science and Engineering IOP Publishing Ltd.: Bristol, UK, 2017 Volume 245, p. 032086.
43. Montgomery, D.C. Design and Analysis of Experiments 5th ed. Wiley: Hoboken, NY, USA, 2001.
44. Derringer, G. Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219, doi:10.1080/00224065.1980.11980968.
45. D’Angelo, G. Lo Presti, D. Thom, N. Optimisation of bitumen emulsion properties for ballast stabilisation. Mater. Constr. 2017, 67, doi:10.3989/mc.2017.04416.
46. Statsoft Elektroniczny Podręcznik Statystyki (Data Science Textbook). Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 09 February 2021).
47. Chomicz-Kowalska, A. Maciejewski, K. Multivariate Optimization of Recycled Road Base Cold Mixtures with Foamed Bitumen. Proc. Eng. 2015, 108, 436–444, doi:10.1016/j.proeng.2015.06.168.
48. Asphalt Academy. Technical Guideline: Bitumen Stabilised Materials. A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials
2nd ed. Asphalt Academy: Thatcher, AZ, USA, 2009 Volume 2.
49. Asphalt Academy. Interim Technical Guidelines (TG2): The Design and Use of Foamed Bitumen Treated Materials Asphalt Academy: Thatcher, AZ, USA, 2002.
50. Muthen, K.M. Foamed asphalt mixes-mix design procedure. Report No. CR-98. Transp. Res. Rec. 1998, 898, 290–296.
51. Lee, H.D. Kim, Y. Development of a Mix Design Process for Cold-in-Place Rehabilitation Using Foamed Asphalt National Transpor-tation Library: New Jersey, NJ, USA, 2003.
52. Schrader, B. Infrared and Raman Spectroscopy: Methods and Applications VCH: Vancouver, BC, Canada, 1995 Volume 380, ISBN 3-527-26446-9.
53. Silverstein, R.M. Webster, F.X. Kiemle, D.J. Spectrometric Identification of Organic Compounds John Wiley & Sons: New York, NY, USA, 2005 ISBN 978-0-470-61637-6.
54. Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Du-rability Relationships. Transp. Res. Circ. 2009, doi:10.17226/23002.
55. Curtis, C.W. Hanson, D.I. Chen, S.T. Shieh, G.J. Ling, M. Quantitative determination of polymers in asphalt cements and hot-mix asphalt mixes. Transp. Res. Rec. 1995, 52–61.
56. Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488, doi:10.1016/S0016-2361(00)00121-6.
57. Masson, J.F. Pelletier, L. Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J. Appl. Polym. Sci. 2001, 79, 1034–1041, doi:10.1002/1097-4628(20010207)79:63.0.CO.2-4.
58. Nasrazadani, S. Mielke, D. Springfield, T. Ramasamy, N. Practical Applications of FTIR to Characterize Paving Materials Technical Report 0-5608-1 Texas Department of Transportation: Austin, TX, USA, 2010.
59. Fernández-Berridi, M.J. González, N. Mugica, A. Bernicot, C. Pyrolysis-FTIR and TGA techniques as tools in the character-ization of blends of natural rubber and SBR. Thermochim. Acta 2006, 444, 65–70, doi:10.1016/j.tca.2006.02.027.
60. Yut, I. Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117, doi:10.1016/j.conbuildmat.2014.03.043.
61. Yao, H. Dai, Q. You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087, doi:10.1016/j.conbuildmat.2015.10.085.
62. Porot, L. Jellema, E. Bell, D. Long lasting asphalt materials with highly modified asphaltic binder. In Proceedings of the Pro-ceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—MairepavLecture Notes in Civil Engi-neering Springer: New York, NY, USA, 2020 pp. 517–527.
63. Zofka, A. Maliszewska, D. Maliszewski, M. Boratyński, J. Application of FTIR ATR method to examine the polymer content in the modified bitumen and to assess susceptibility of bitumen to ageing. Roads Bridg. Drogy Mosty 2015, 14, 163–174, doi:10.7409/rabdim.015.011.
64. Mouillet, V. Lamontagne, J. Durrieu, F. Planche, J.-P. Lapalu, L. Infrared microscopy investigation of oxidation and phase evolution in bitumen modified with polymers. Fuel 2008, 87, 1270–1280, doi:10.1016/j.fuel.2007.06.029.