Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[104850] Artykuł:

Parametric Analysis of Tensegrity Plate-Like Structures: Part 2—Quantitative Analysis

Czasopismo: Applied Sciences   Tom: 11, Zeszyt: 2, Strony: paper: 602
ISSN:  2076-3417
Opublikowano: Styczeń 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa i transport5050.00100.00  
Justyna Tomasik orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niedoktorant szkoły doktorskiejInżynieria lądowa i transport5050.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

tensegrity  self-stress state  infinitesimal mechanism  modified Quartex  geometrical non-linear model  Total Lagrangian 



Abstract:

The study includes a parametric analysis of a group of tensegrity plate-like structures built with modified Quartex modules. The quantitative assessment, including the calculation of the structure’s response to constant loads, was carried out. A static parametric analysis was performed, with particular emphasis on the influence of the initial prestress level on the displacements, the effort, and the stiffness of the structure. A geometrical non-linear model was used in the analysis. A reliable assessment required introducing a parameter for determining the influence of the initial prestress level on the overall stiffness of the structure at a given load. The stiffness of the structure was found to depend not only on the geometry and material properties, but also on the initial prestress level and external load. The results show that the effect of the initial prestress on the overall stiffness of the structure is greater with less load and that the effect of load is most significant with low pre-stressing forces. The analysis demonstrates that the control of static parameters is possible only when infinitesimal mechanisms occur in the structure.



B   I   B   L   I   O   G   R   A   F   I   A
1. Zhang, L.-Y.
Zhu, S.-X.
Chen, X.-F.
Xu, G.-K. Analytical Form-Finding for Highly Symmetric and Super-Stable Configurations of Rhombic Truncated Regular Polyhedral Tensegrities. J. Appl. Mech. 2019, 86, doi:10.1115/1.4042216.
2. Schek, H.-J. The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng.
1974, 3, 115–134.
3. Xu, X.
Wang, Y.
Luo, Y. Finding member connectivities and nodal positions of tensegrity structures based on force density
method and mixed integer non-linear programming. Eng. Struct. 2018, 166, 240–250.
4. Barnes, M.R. Form Finding and Analysis of Tension Structures by Dynamic Relaxation. Int. J. Space Struct. 1999, 14, 89–104.
5. Domer, B.
Fest, E.
Lalit, V.
Smith, I.F.C. Combining Dynamic Relaxation Method with Artificial Neural Networks to Enhance
Simulation of Tensegrity Structures. J. Struct. Eng. 2003, 129, 672–681.
6. Estrada, G.G.
Bungartz, H.-J.
Mohrdieck, C. Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 2006, 43,
6855–6868.
7. Pagitz, M.
Mirats Tur, J.M. Finite element based form-finding algorithm for tensegrity structures. Int. J. Solids Struct. 2009, 46,
3235–3240.
8. Tran, H.C.
Lee, J. Advanced form-finding of tensegrity structures. Comput. Struct. 2010, 88, 237–246.
9. Koohestani, K.
Guest, S.D. A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids
Struct. 2013, 50, 2995–3007.
10. Lee, S.
Lee, J.
Kang, J. A Genetic Algorithm Based Form-finding of Tensegrity Structures with Multiple Self-stress States. J.
Asian Archit. Build. Eng. 2017, 16, 155–162.
11. Djouadi, S.
Motro, R.
Pons, J.C.
Crosnier, B. Active Control of Tensegrity Systems. J. Aerosp. Eng. 1998, 11, 37–44.
12. Fest, E.
Shea, K.
Smith Ian, F.C. Active Tensegrity Structure. J. Struct. Eng. 2004, 130, 1454–1465.
13. Domer, B.
Smith, I.F.C. An Active Structure that Learns. J. Comput. Civ. Eng. 2005, 19, 16–24.
14. Adam, B.
Smith, I.F.C. Active tensegrity: A control framework for an adaptive civil-engineering structure. Comput. Struct.
2008, 86, 2215–2223.
15. Raja, M.G.
Narayanan, S. Active control of tensegrity structures under random excitation. Smart Mater. Struct. 2007, 16, 809–
817.
16. Sabouni-Zawadzka, A. Active Control of Smart Tensegrity Structures. Arch. Civ. Mech. Eng. 2014, 60, 517–534.
17. Amouri, S.
Averseng, J.
Dubé, J.-F. Active control design of modular tensegrity structures. In Proceedings of International
Association for Shell and Spatial Structures (IASS) Symposium 2013, Wroclaw, Poland, 2013.
18. Oliveto, N.D.
Sivaselvan, M.V. Dynamic analysis of tensegrity structures using a complementarity framework. Comput. Struct.
2011, 89, 2471–2483.
19. Fraternali, F.
Senatore, L.
Daraio, C. Solitary waves on tensegrity lattices. J. Mech. Phys. Solids 2012, 60, 1137–1144.
20. Faroughi, S.
Lee, J. Analysis of tensegrity structures subject to dynamic loading using a Newmark approach. J. Build. Eng. 2015,
2, 1–8.
21. Ashwear, N.
Tamadapu, G.
Eriksson, A. Optimization of modular tensegrity structures for high stiffness and frequency separation requirements. Int. J. Solids Struct. 2016, 80, 297–309.
22. Kan, Z.
Peng, H.
Chen, B.
Zhong, W. Non-linear dynamic and deployment analysis of clustered tensegrity structures using a
positional formulation FEM. Compos. Struct. 2018, 187, 241–258.
23. Tibert, G.
Pellegrino, S. Deployable Tensegrity Reflectors for Small Satellites. J. Spacecr. Rockets. 2002, 39, 701–709.
24. Veuve, N.
Safaei, S.
Smith, I. Deployment of a Tensegrity Footbridge. J. Struct. Eng. 2015, 141, 04015021.
25. Gilewski, W.
Kłosowska, J.
Obara, P. Applications of Tensegrity Structures in Civil Engineering. Procedia Eng. 2015, 111, 242–
248.
26. Wang, Z.
Li, K.
He, Q.
Cai, S. A Light-Powered Ultralight Tensegrity Robot with High Deformability and Load Capacity. Adv.
Mater. 2019, 31, 1806849.
27. Park, S.
Park, E.
Yim, M.
Kim, J.
Seo, T.W. Optimization-Based Nonimpact Rolling Locomotion of a Variable Geometry
Truss. IEEE Robot. Autom. Lett. 2019, 4, 747–752.
28. Zhang, Q.
Zhang, D.
Dobah, Y.
Scarpa, F.
Fraternali, F.
Skelton, R.E. Tensegrity cell mechanical metamaterial with metal
rubber. Appl. Phys. Lett. 2018, 113, 031906.
29. Fabbrocino, F.
Carpentieri, G. Three-dimensional modeling of the wave dynamics of tensegrity lattices. Compos. Struct. 2017,
173, 9–16.
30. Fraddosio, A.
Marzano, S.
Pavone, G.
Piccioni, M.D. Morphology and self-stress design of V-Expander tensegrity cells.
Compos. Part B Eng. 2017, 115, 102–116.
31. Sabouni-Zawadzka, A.
Gilewski, W. Soft and Stiff Simplex Tensegrity Lattices as Extreme Smart Metamaterials. Materials
2019, 12, 187.
32. Gilewski, W.
Sabouni-Zawadzka, A. On possible applications of smart structures controlled by self-stress. Arch. Civ. Mech.
Eng. 2014, 15, 469–478.
33. Hanaor, A.
Liao, M.-K. Double-Layer Tensegrity Grids: Static Load Response. Part I: Analytical Study. J. Struct. Eng. 1991, 117,
1660–1674.
34. Hanaor, A. Double-Layer Tensegrity Grids: Static Load Response. Part II: Experimental Study. J. Struct. Eng. 1991, 117, 1675–
1684.
Appl. Sci. 2021, 11, 602 22 of 22
35. Murakami, H. Static and dynamic analyses of tensegrity structures. Part 1. Non-linear equations of motion. Int. J. Solids Struct.
2001, 38, 3599–3613.
36. Murakami, H. Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int. J. Solids Struct. 2001, 38,
3615–3629.
37. Fu, F. Non-linear static analysis and design of Tensegrity domes. Steel Compos. Struct. 2006, 6, 417–433.
38. Angellier, N.
Dubé, J.F.
Quirant, J.
Crosnier, B. Behavior of a Double-Layer Tensegrity Grid under Static Loading: Identification of Self-Stress Level. J. Struct. Eng. 2013, 139, 1075–1081.
39. Gilewski, W.
Obara, P.
Kłosowska, J. Self-stress control of real civil engineering tensegrity structures. AIP Conf. Proc. 2018,
1922, 150004.
40. Gilewski, W.
Kłosowska, J.
Obara, P. Parametric analysis of some tensegrity structures. MATEC Web Conf. 2019, 262, 10003.
41. Gilewski, W.
Kłosowska, J.
Obara, P. The influence of self-stress on the behavior of tensegrity-like real structure. MATEC Web
Conf. 2017, 117, 00079.
42. Obara, P. Analysis of orthotropic tensegrity plate strips using a continuum two-dimensional model. MATEC Web Conf. 2019,
262, 10010.
43. Obara, P. Application of linear six-parameter shell theory to the analysis of orthotropic tensegrity plate-like structures. J. Theor.
App. Mech. 2019, 57, 167–178.
44. Obara, P. Dynamic and Dynamic Stability of Tensegrity Structures
Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland,
2019. (In Polish)
45. Obara, P.
Tomasik, J. Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis. Appl. Sci. 2020, 10,
7042.
46. Argyris, J.
Scharpf, D.W. Large Deflection Analysis of Prestressed Networks. J. Struct. Div. 1972, 98, 633–654.
47. Motro, R. Forms and Forces in Tensegrity Systems. In Proceedings of the Third International Conference on Space Structures,
Amsterdam, The Netherlands, 11–14 September 1984
Nooshin, H., Ed.
Elsevier: London, UK, , 1984
pp. 180–185.
48. Kebiche, K.
Kazi-Aoual, M.N.
Motro, R. Geometrical non-linear analysis of tensegrity systems. Eng. Struct. 1999, 21, 864–876.
49. Tran, H.C.
Lee, J. Geometric and material non-linear analysis of tensegrity structures. Acta Mech. Sin. 2011, 27, 938–949.
50. Faroughi, S.
Lee, J. Geometrical Non-linear Analysis of Tensegrity Based on a Co-Rotational Method. Adv. Struct. Eng. 2014, 17,
41–51.
51. Szmelter, J. Computer Methods in Mechanics
Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1980.
52. Crisfield, M.A. Non-Linear Finite Element Analysis of Solids and Structures, Essentials
Wiley: Hoboken, NJ, USA, 1991
ISBN
978-0-471-92956-7.
53. Bathe, K.-J. Finite Element Procedures in Engineering Analysis
Prentice-Hall: New York, NY, USA, 1982.
54. Borst, R.
Crisfield, M.
Remmers, J.
Verhoosel, C. Non-Linear Finite Element Analysis of Solids and Structures: Second Edition

Wiley: Chichester, UK, 2012.
55. Rakowski, G.
Kacprzyk, Z. Finite Element Method in Structural Mechanics
Oficyna Wydawnicza Politechniki Warszawskiej:
Warsaw, Poland, 2016.