Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[104830] Artykuł:

Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure

Czasopismo: Materials   Tom: 14, Zeszyt: 2, Strony: 1-20
ISSN:  1996-1944
Opublikowano: 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paweł Tworzewski orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport2535.00.00  
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport2535.0070.00  
Przemysław Czapik orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport2535.0070.00  
Justyna Tworzewska orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport2535.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

reinforced concrete  diagnostic testing  corrosion  carbonation  galvanostatic pulse method  phase composition analysis  X-ray analysis  thermal analysis 



Abstract:

Existing buildings, especially historical buildings, require periodic or situational diagnostic tests. If a building is in use, advanced non-destructive or semi-destructive methods should be used. In the diagnosis of reinforced concrete structures, tests allowing to assess the condition of the reinforcement and concrete cover are particularly important. The article presents non-destructive and semi-destructive research methods that are used for such tests, as well as the results of tests performed for selected elements of a historic water tower structure. The assessment of the corrosion risk of the reinforcement was carried out with the use of a semi-destructive galvanostatic pulse method. The protective properties of the concrete cover were checked by the carbonation test and the phase analysis of the concrete. X-ray diffractometry and thermal analysis methods were used for this. In order to determine the position of the reinforcement and to estimate the concrete cover thickness distribution, a ferromagnetic detection system was used. The comprehensive application of several test methods allowed mutual verification of the results and the drawing of reliable conclusions. The results indicated a very poor state of the reinforcement, loss in the depth of cover and sulphate corrosion.



B   I   B   L   I   O   G   R   A   F   I   A
Raczkiewicz, W. Building Diagnostics. Selected Methods of Materials As Well As Elements and Structures Test
Kielce University of Technology: Kielce, Poland, 2019. (In Polish) [Google Scholar]
Szmygina, B. Adaptation of Historic Buildings to Contemporary Utility Functions
Lublin Scientific Society, Lublin University of Technology: Warsaw, Poland, 2009. (In Polish) [Google Scholar]
Stawiski, B.
Kania, T. Building diagnostics versus effectiveness of repairs. MATEC Web Conf. 2018, 174, 03005. [Google Scholar] [CrossRef]
Act of 7 July 1994 (as Amended)
Journal of Laws 1994 No. 89 Item 414. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19940890414. (accessed on 8 January 2021).
Ślusarek, J.
Szymanowska-Gwiżdż, A.
Krause, P. Damage to historical balconies in view of building physics. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (WMCAUS), Prague, Czech, 18–22 June 2018
Volume 471. [Google Scholar] [CrossRef]
Orłowski, Z.
Szklennik, N. The scope of building modernization—As a result of the diagnostic analysis of the object. Civil Environ. Eng. 2011, 2, 353–360. (In Polish) [Google Scholar]
Chybiński, M.
Kurzawa, Z.
Polus, Ł. Problems with Buildings Lacking Basic Design Documentation. Procedia Eng. 2017, 195, 24–31. [Google Scholar] [CrossRef]
Schabowicz, K. Non-destructive testing of materials in civil engineering. Materials 2019, 12, 3237. [Google Scholar] [CrossRef]
Schabowicz, K.
Sterniuk, A.
Kwiecińska, A.
Cerba, P. Comparative Analysis of Selected Non-Destructive Methods of Specific Diagnosis. Mater. Sci. Eng. 2018, 365, 032063. [Google Scholar] [CrossRef]
Zybura, A.
Jaśniok, M.
Jaśniok, T. Diagnostics of Reinforced Concrete Structures. Tests on Reinforcement Corrosion and Concrete Protective Properties
PWN: Warsaw, Poland, 2011. [Google Scholar]
Drobiec, Ł.
Jasiński, R.
Piekarczyk, A. Diagnostics of Reinforced Concrete Structures. Methodology, Field Tests, Laboratory Tests of Concrete and Steel
PWN: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
Zhou, Z.
Jin, H. Evaluation of the protection of historical buildings. In Proceedings of the Procedia Engineering, International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure—Galvanostatic pulse method. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech, 24–26 May 2017
pp. 1425–1431. [Google Scholar]
Brodnan, M.
Koteš, P.
Bahleda, F.
Šebök, M.
Kučera, M.
Kubissa, W. Using non-destructive methods for measurement of reinforcement corrosion in practice. Prot. Against Corros. 2017, 3, 55–58. [Google Scholar] [CrossRef]
Tworzewski, P. Impact of concrete cover thickness deviations on the expected durability of reinforced concrete structures. Constr. Rev. 2017, 11, 52–55. (In Polish) [Google Scholar]
Hulimka, J.
Kałuża, M. Basic Chemical Tests of Concrete during the Assessment of Structure Suitability—Discussion on Selected Industrial Structures. Appl. Sci. 2020, 10, 358. [Google Scholar] [CrossRef]
Hoła, J.
Bień, J.
Sadowski, Ł.
Schabowicz, K. Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 87–96. [Google Scholar] [CrossRef]
Otieno, M.
Ikotun, J.
Ballim, Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Constr. Build. Mater. 2019, 198, 172–181. [Google Scholar] [CrossRef]
Anterrieu, O.
Giroux, B.
Gloaguen, E.
Carde, C. Non-destructive data assimilation as a tool to diagnose corrosion rate in reinforced concrete structures. J. Build. Eng. 2019, 23, 193–206. [Google Scholar] [CrossRef]
Filipek, R.
Pasierb, P. New, nondestructing diagnostic method of corrosion for reinforced concrete structures. Corros. Prot. 2017, 12. [Google Scholar] [CrossRef]
Kurdowski, W. Cement and Concrete Chemistry
Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
Qiu, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Constr. Build. Mater. 2020, 247. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Wójcicki, A. Selected aspects of forecasting the level of reinforcing steel corrosion in concrete by the electrochemical method. Weld. Rev. 2017, 11, 28–33. [Google Scholar]
Jaśniok, M.
Jaśniok, T. Measurements on Corrosion Rate of Reinforcing Steel under various Environmental Conditions, Using an Insulator to Delimit the Polarized Area. Procedia Eng. 2017, 193, 431–438. [Google Scholar] [CrossRef]
Raczkiewicz, W. Influence of the Air-Entraining Agent in the Concrete Coating on the Reinforcement Corrosion Process in Case of Simultaneous Action of Chlorides and Frost. Adv. Mater. Sci. 2018, 1, 13–19. [Google Scholar] [CrossRef]
Bogas, J.A.
Real, S. A Review on the Carbonation and Chloride Penetration Resistance of Structural Lightweight Aggregate Concrete. Materials 2019, 12, 3456. [Google Scholar] [CrossRef]
Melchers, R. Long-Term Durability of Marine Reinforced Concrete Structures. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef]
Czapik, P.
Owsiak, Z. Chemical corrosion of external stairs—Case study. In Proceedings of the MATBUD’2018—8th Scientific-Technical Conference on Material Problems in Civil Engineering, Cracow, Poland, 25–27 June 2018
Volume 163, pp. 1–7. [Google Scholar] [CrossRef]
Bacharz, K.
Raczkiewicz, W.
Bacharz, M.
Grzmil, W. Manufacturing Errors of Concrete Cover as a Reason of Reinforcement Corrosion in a Precast Element—Case Study. Coatings 2019, 9, 702. [Google Scholar] [CrossRef]
Tworzewski, P.
Raczkiewicz, W.
Grzmil, W.
Czapik, P. Condition assessment of selected reinforced concrete structural elements of the bus station in Kielce. MATEC Web Conf. 2019, 284. [Google Scholar] [CrossRef]
Bednarz, L.
Górski, A.
Jasieńko, J.
Rusiński, E. Simulations and analyses of arched brick structures. Autom. Constr. 2011, 20, 741–754. [Google Scholar] [CrossRef]
Lourenço, P.B. Computations on historic masonry structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
Navrátil, J.
Drahorád, M.
Ševčík, P. Assessment of Load-Bearing Capacity of Bridges. Solid State Phenom. 2017, 259, 113–118. [Google Scholar] [CrossRef]
Ferreira, D.R.
Araújo, A.
Fonseca, E.M.
Piloto, P.A.
Pinto, J. Behaviour of non-loadbearing tabique wall subjected to fire—Experimental and numerical analysis. J. Build. Eng. 2017, 9, 164–176. [Google Scholar] [CrossRef]
Nguyen, Q.H.
Ly, H.B.
Tran, V.Q.
Nguyen, T.A.
Phan, V.H.
Le, T.T.
Pham, B.T. A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns. Molecules 2020, 25, 5348. [Google Scholar] [CrossRef]
Nikoo, M.
Sadowski, Ł.
Nikoo, M. Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings 2017, 7, 160. [Google Scholar] [CrossRef]
Runkiewicz, L. The use of non-destructive methods to assess the technical condition of large-panel buildings. Weld. Rev. 2014, 86, 51–59. (In Polish) [Google Scholar]
Drobiec, Ł.
Jasiński, R.
Piekarczyk, A. Ways of locating reinforcing steel in reinforced concrete structures. Radiological method, Part II. Build. Rev. 2007, 12, 31–37. (In Polish) [Google Scholar]
Drobiec, Ł.
Jasiński, R.
Piekarczyk, A. Ways of locating reinforcing steel in reinforced concrete structures. Radiological method, Part I. Build. Rev. 2007, 11, 34–39. [Google Scholar]
Redmer, B.
Weise, F.
Ewert, U.
Likhatchev, A. Location of Reinforcement in Structures by Different Methods of Gamma-Radiography, International Symposium (NDT-CE 2003). Non-Destructive Testing in Civil Engineering. 2003. Available online: https://www.ndt.net/article/ndtce03/papers/v020/v020.htm. (accessed on 8 January 2021).
De Alcantara, N.P.
Costa, D.C.
Guedes, D.S.
Sartori, R.V.
Bastos, P.S.S. A Non-Destructive Testing Based on Electromagnetic Measurements and Neural Networks for the Inspection of Concrete Structures. Adv. Mater. Res. 2011, 301, 597–602. [Google Scholar] [CrossRef]
Helal, J.
Sofi, M.
Mendis, P. Non-destructive testing of concrete: A review of methods. Electron. J. Struct. Eng. 2015, 14.1, 97–105. [Google Scholar]
Wiwatrojanagul, P.
Sahamitmongkol, R.
Tangtermsirikul, S. A method to detect lap splice in reinforced concrete using a combination of cover meter and GPR. Constr. Build. Mater. 2018, 173, 481–494. [Google Scholar] [CrossRef]
Salman, A.A. Non-Destructive Test of Concrete Structures Using: FERROSCAN. Eng. Technol. J. 2011, 29, 2933–2941. [Google Scholar]
Mishra, M.
Grande, C. Probabilistic NDT Data Fusion of Ferroscan Test Data Using Bayesian Inference
Structural Analysis of Historical Constructions: Leuven, Belgium, 2016. [Google Scholar] [CrossRef]
Shaw, M.R.
Millard, S.G.
Molyneaux, T.C.K.
Taylor, M.J.
Bungey, J.H. Location of steel reinforcement in concrete using ground penetrating radar and neural networks. NDT E Int. 2005, 38, 203–212. [Google Scholar] [CrossRef]
Lachowicz, J.
Rucka, M. Application of GPR method in diagnostics of reinforced concrete structures. Diagnostics 2015, 16, 31–36. [Google Scholar]
Tosti, F.
Ferrante, C. Using Ground Penetrating Radar Methods to Investigate Reinforced Concrete Structures. Surv. Geophys. 2019, 41, 485–530. [Google Scholar] [CrossRef]
Rucka, M.
Wojtczak, E.
Zielińska, M. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics. Measurement 2020, 154, 107494. [Google Scholar] [CrossRef]
Lachowicz, J.
Rucka, M. Diagnostics of pillars in St. Mary’s Church (Gdańsk, Poland) using the GPR method. Int. J. Arch. Heritage 2019, 13, 1223–1233. [Google Scholar] [CrossRef]
Hlaváč, Z.
Anton, O.
Garbacz, A. Hlav Detection of Steel Bars in Concrete by Impact-Echo. Trans. Transp. Sci. 2009, 2, 122–127. [Google Scholar] [CrossRef]
Moczko, A.
Rybak, J. Impulse response– nowoczesna metoda nieniszczącej defektoskopii konstrukcji betonowych. Bud. Technol. Archit. 2010, 1, 46–50. [Google Scholar]
Logoń, D.
Schabowicz, K. The Recognition of the Micro-Events in Cement Composites and the Identification of the Destruction Process Using Acoustic Emission and Sound Spectrum. Materials 2020, 13, 2988. [Google Scholar] [CrossRef] [PubMed]
Trąmpczyński, W.
Goszczyńska, B.
Bacharz, M. Acoustic Emission for Determining Early Age Concrete Damage as an Important Indicator of Concrete Quality/Condition before Loading. Materials 2020, 13, 3523. [Google Scholar] [CrossRef] [PubMed]
Świt, G. Acoustic Emission Method for Locating and Identifying Active Destructive Processes in Operating Facilities. Appl. Sci. 2018, 8, 1295. [Google Scholar] [CrossRef]
Tworzewski, P.
Goszczyńska, B. An Application of an Optical Measuring System to Reinforced Concrete Beams Analysis. In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016. [Google Scholar] [CrossRef]
Raczkiewicz, W.
Wójcicki, A.
Grzmil, W.
Zapała-Sławeta, J. Impact of Environment Conditions on the Degradation Process of Selected Reinforced Concrete Elements. Mater. Sci. Eng. 2019, 471, 032048. [Google Scholar] [CrossRef]
Czapik, P. Microstructure and Degradation of Mortar Containing Waste Glass Aggregate as Evaluated by Various Microscopic Techniques. Materials 2020, 13, 2186. [Google Scholar] [CrossRef] [PubMed]
Zhu, X.E.
Dai, M.X. A Discuss on Basing Half-Cell Potential Method for Estimating Steel Corrosion Rate in Concrete. Appl. Mech. Mater. 2012, 166, 1926–1930. [Google Scholar] [CrossRef]
Frølund, T.
Jensen, F.
Bäßler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In Proceedings of the First International Conference on Bridge Maintenance, Safety and Management IABMAS 2002, Barcelona, Spain, 14–17 July 2002. [Google Scholar]
Pacheco, A.R.
Schokker, A.J.
Volz, J.S.
Hamilton, H.R. Linear Polarization Resistance Tests on Corrosion Protection Degree of Post-Tensioning Grouts. ACI Mater. J. 2011, 108, 365–370. [Google Scholar]
Jaśniok, M.
Jaśniok, T. Evaluation of Maximum and Minimum Corrosion Rate of Steel Rebars in Concrete Structures, Based on Laboratory Measurements on Drilled Cores. Procedia Eng. 2017, 193, 486–493. [Google Scholar] [CrossRef]
Rengaraju, S.
Neelakantan, L.
Pillai, R.G. Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems—An attempt and challenges. Electrochim. Acta 2019, 308, 131–141. [Google Scholar] [CrossRef]
Liu, J.
Jiang, Z.
Zhao, Y.
Zhou, H.
Wang, X.
Zhou, H.J.
Xing, F.
Li, S.
Zhu, J.-H.
Liu, W. Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef]
GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 20 March 2014).
Steiner, S.
Lothenbach, B.
Proske, T.
Borgschulte, A.
Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 2020, 135, 106116. [Google Scholar] [CrossRef]
Liu, E.
Ghandehari, M.
Brückner, C.
Khalil, G.
Worlinsky, J.
Jin, W.
Sidelev, A.
Hyland, M.A. Mapping high pH levels in hydrated calcium silicates. Cem. Concr. Res. 2017, 95, 232–239. [Google Scholar] [CrossRef]
Jasieńko, J.
Moczko, M.
Moczko, A.
Dżugar, R. Testing the mechanical and physical properties of concrete in the bottom perimeter ring of the dome of the Centennial Hall in Wrocław. Conserv. News 2010, 27, 21–34. [Google Scholar]
Runkiewicz, L.
Hoła, J. Technical diagnostics of reinforced concrete structures. Eng. Constr. 2018, 7, 397–405. (In Polish) [Google Scholar]
Han, J.
Sun, W.
Pan, G.
Caihui, W. Monitoring the Evolution of Accelerated Carbonation of Hardened Cement Pastes by X-Ray Computed Tomography. J. Mater. Civ. Eng. 2013, 25, 347–354. [Google Scholar] [CrossRef]
Šavija, B.
Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef]
Tomasin, P.
Mondin, G.
Zuena, M.
El Habra, N.
Nodari, L.
Moretto, L.M. Calcium alkoxides for stone consolidation: Investigating the carbonation process. Powder Technol. 2019, 344, 260–269. [Google Scholar] [CrossRef]
Tracz, T.
Zdeb, T. Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials 2019, 12, 192. [Google Scholar] [CrossRef]
Chen, Y.
Peng, L.
Zhiwu, Y. Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials 2018, 11, 2167. [Google Scholar] [CrossRef]
Grzmil, W.
Owsiak, Z. The Influence of carbonation of self-compacting concrete with granulated blast furnace slag addition on its chosen properties. Cem. Lime Concr. 2013, 18, 137–143. [Google Scholar]
Stepkowska, E.T. Simultaneous IR/TG study of calcium carbonate in two aged cement pastes. J. Therm. Anal. Calorim. 2006, 84, 175–180. [Google Scholar] [CrossRef]
Czapik, P.
Wolniewicz, M. Microstructure of cement paste containing large amount of silica fume. Monografie Technologii Betonu. Proceedings of 10th Dni Betonu Conference, Wisła, Poland, 8–10 November 2018
Kijowski, P., Ed.
Polish Cement Association: Krakow, Poland, 2018
pp. 571–583. [Google Scholar]
Rimmele, G.
Barlet-Gouédard, V.
Porcherie, O.
Goffé, B.
Brunet, F. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids. Cem. Concr. Res. 2008, 38, 1038–1048. [Google Scholar] [CrossRef]
Dong, B.-Q.
Qiu, Q.-W.
Xiang, J.-Q.
Huang, C.-J.
Xing, F.
Han, N.
Lu, Y.-Y. Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr. Build. Mater. 2014, 54, 558–565. [Google Scholar] [CrossRef]
Talakokula, V.
Bhalla, S.
Ball, R.J.
Bowen, C.R.
Pesce, G.L.
Kurchania, R.
Bhattacharjee, B.
Gupta, A.
Paine, K. Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers. Sens. Actuators A Phys. 2016, 242, 79–91. [Google Scholar] [CrossRef]
Villain, G.
Thiery, M.
Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
Urbanowicz, D.
Warzocha, M. The use of ferromagnetic devices in the diagnostics of building structures. Constr. Rev. 2015, 5, 32–35. (In Polish) [Google Scholar]
PN-EN 13295:2005. Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Carbonation Depth in Hardened Concrete by Phenolphthalein Method. Polish Committee for Standardization: Warsaw, Poland, 2005. [Google Scholar]
Krzywobłocka-Laurów, R. Instruction 357/98. Concrete Phase Composition Tests
Building Research Institute: Warsaw, Poland, 1998. [Google Scholar]
Awoyera, P.
Britto, B.F. Foamed concrete incorporating mineral admixtures and pulverized ceramics: Effect of phase change and mineralogy on strength characteristics. Constr. Build. Mater. 2020, 234, 117434. [Google Scholar] [CrossRef]
Liu, S.
Dou, Z.
Zhang, S.
Zhang, H.
Guan, X.
Feng, C.
Zhang, J. Effect of sodium hydroxide on the carbonation behavior of β-dicalcium silicate. Constr. Build. Mater. 2017, 150, 591–594. [Google Scholar] [CrossRef]
Pelovski, Y.
Dombalov, I.
Petkova, V. Mechano-chemical Activation of Dolomite. J. Therm. Anal. Calorim. 2001, 64, 1257–1263. [Google Scholar] [CrossRef]
Chernykh, T.N.
Nosov, A.V.
Kramar, L.Y. Dolomite magnesium oxychloride cement properties control method during its production. IOP Conf. Ser. Mater. Sci. Eng. 2015, 71, 012045. [Google Scholar] [CrossRef]