Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[101370] Artykuł:

Assessment of the Effect of Wind Load on the Load Capacity of a Single-Layer Bar Dome

Czasopismo: Buildings   Tom: 10, Zeszyt: 179, Strony: 1-27
ISSN:  2075-5309
Opublikowano: Pażdziernik 2020
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Urszula Radoń orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3435.5228.57  
Paweł Zabojszcza orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niezaliczony do "N"Inżynieria lądowa, geodezja i transport3334.4828.57  
Dominika Opatowicz Niespoza "N" jednostki33.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

single-layer bar dome  linear bifurcation analysis  geometric nonlinear analysis 



Abstract:

The main purpose of the paper was the assessment of the effect of wind load on the load capacity of a single-layer bar dome. Additionally, which numerical method is appropriate for low-rise single-layer bar domes was checked. In order to explain the effect of the height-to-span ratio on the selection of the appropriate calculation model and method of analysis of the bar dome, an example of the known von Mises truss was proposed. Two cases of von Mises truss differing in the height-to-span ratio were considered. For the shallow structure, a significant change in the value of the stiffness matrix determinant and the current stiffness parameter was observed. A similar tendency in the behavior of the structure can be observed on fragments of larger structures, including shallow single-layer steel domes. These problems are described on the basis of the dome, which is located on top of the building housing the restaurant. This structure is subjected to large displacement gradients and the actual configuration is taken into account in analysis. The analysis showed that there is a change in stiffness for these structures, and, therefore, that such structures should be designed according to geometric nonlinear analysis (GNA).



B   I   B   L   I   O   G   R   A   F   I   A
1. Kozłowski, A. Steel Structures. Examples of Calculations According to PN-EN-1993-1. Part I. Selected Elements and Connections Oficyna Wydawnicza Politechniki Rzeszowskiej: Rzeszów, Poland, 2009 [in Polish].
2. Giżejowski, M. Ziółko, J. (Red.), General Construction, Steel Constructions of Buildings. Design According to Eurocodes with Examples of Calculations Publisher: Arkady, Warsaw, 2010 Volume 5 [in Polish].
3. PN-EN 1993-1-1. Eurocode 3: Design of Steel Structures. Part 1–1: General Rules and Rules for Buildings. Publisher: PKN, Warsaw, Poland.
4. Szychowski, A. Stability of cantilever walls of steel thin-walled bars with open cross-section. Thin-Walled Struct. 2015, 94, 348–358.
5. Szychowski, A. The stability of eccentrically compressed thin plates with a longitudinal free edge and with stress variation in the longitudinal direction. Thin-Walled Struct. 2008, 46, 494–505.
6. Oda, H. Usami, T. Stability design of steel plane frame by second-order elastic analysis. Eng. Struct. 1997, 19, 617–627.
7. Fan, F. Yan, J. Cao, Z. Elasto-plastic stability of single-layer reticulated domes with initial curvature of members. Thin-Walled Struct. 2012, 60, 239–246.
8. Ramalingam, R. Jayachandran, S.A. Postbuckling behavior of flexibly connected single layer steel domes. J. Constr. Steel Res. 2015, 114, 136–145.
9. Plaut, R.H. Snap-through of shallow reticulated domes under unilateral displacement control. Int. J. Solids Struct. 2018, 148–149, 24–34, doi:10.1016/j.ijsolstr.2017.10.008.
10. Xu, Y. Han, Q.H. Parke, G.A.R. Liu, Y.M. Experimental Study and Numerical Simulation of the Progressive Collapse Resistance of Single-Layer Latticed Domes. J. Struct. Eng. 2017, 143, doi:10.1061/(ASCE)ST.1943-541X.0001868.
11. Yan, S. Zhao, X. Rasmussen, K.J.R. Zhang, H. Identification of critical members for progressive collapse analysis of singlelayer latticed domes. Eng. Struct. 2019, 188, 111–120, doi:10.1016/j.engstruct.2019.03.027.
12. Walport, F. Gardner, L. Real, E. Arrayago, I. Nethercot, D.A. Effects of material nonlinearity on the global analysis and stability of stainless steel frames. J. Constr. Steel Res. 2019, 152, 173–182, doi:10.1016/j.jcsr.2018.04.019.
13. Koiter, W.N. On the Stability of Elastic Equilibrium, Publisher: AFFDL OHIO, USA Technical Report 70-25 1970.
14. Oden, J.T. Fost, R.B. Convergence, accuracy and stability of finite element approximations of a class of non-linear hyperbolic equations. Numer. Methods Eng. 1973, doi:10.1002/nme.1620060307.
15. Bathe, K.J. Finite Element Procedures in Engineering Analysis Prentice Hall: New York, NY, USA, 1996.
16. Belytschko, T. Liu, W.K. Moran, B. Nonlinear Finite Elements for Continua and Structures Wiley: Chichester, UK, 1997.
17. Kleiber, M. Some results in the numerical analysis of structural instabilities, Part 1 Statics. Eng. Trans. 1982, 30, 327–352.
18. Biegus, A. Basics of Design and Impact on Building Structures Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2014 [in Polish].
19. Biegus, A. Builder's Educational Notebooks. Issue 1. Basics of Structure Design. Actions on Structures. Steel Structure Design Builder:,Warsaw, Poland, 2011 [in Polish].
20. Bergan, P.G. Soreide, T.H. Solution of large displacement and stability problem using the current stiffness parameter. In Proceedings of the Finite Elements in Nonlinear Mechanics, Geilo, Norway, September 1977 pp. 647–669.
21. Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 1979, 15, 529–551.
22. Riks, E. The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 1972, 39, 1060–1065.
23. Crisfield, M.A. A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 1981, 13, 55–62.
24. Ramm, E. Strategies for Tracing the Non-Linear Response Near Limit Points. Nonlinear Finite Element Analysis in Structural Mechanics Springer: Berlin/Heidelberg, Germany, 1981 pp. 68–89.
25. Wempner, G.A. Discrete approximation related to nonlinear theories of solids. Int. J. Solids Struct. 1971, 7, 1581–1599, doi:10.1016/0020-7683(71)90038-2.
26. Ritto-Corrêa, M. Camotim, D. On the arc-length and other quadratic control methods: Established, less known and new implementation procedures. Comput. Struct. 2008, 86, 1353–1368, doi:10.1016/j.compstruc.2007.08.003.
27. Leon, S.E. Paulino, G.H. Pereira, A. Menezes, I.F.M. Lages, E.N. A Unified Library of Nonlinear Solution Schemes. Appl. Mech. Rev. 2011, 64, 040803, doi:10.1115/1.4006992.
28. Rezaiee-Pajand, M. Naserian, R. Afsharimoghadam, H. Geometrical nonlinear analysis of structures using residual variables, Mechanics Based. Des. Struct. Mach. 2019, 47, 215–233, doi:10.1080/15397734.2018.1545585.
29. Waszczyszyn, Z. Cichoń, C. Radwańska, M. Stability of Structures by Finite Element Methods Elsevier: Amsterdam, The Netherlands, 1994.
30. Pawlak, U. Szczecina, M. Dynamic eigenvalue of concrete slab road surface. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 22057.
31. Kłosowska, J. Obara, P. Gilewski, W. Self-stress control of real civil engineering tensegrity structures. AIP Conf. Proc. 2018, 1922, 150004, doi:10.1063/1.5019157.
32. Obara, P. Kłosowska, J. Gilewski, W. Truth and myth about 2D Tensegrity Trusses. Appl. Sci. 2019, 9, 179.
33. Zabojszcza, P. Radoń, U. The Impact of Node Location Imperfections on the Reliability of Single-Layer Steel Domes. Appl. Sci. 2019, 9, 2742.
34. Pecknold, D.A. Ghaboussi, J. Healey, T.J. Snap-through and bifurcation in a simple structure. J. Eng. Mech. ASCE 1985, 7, 909–922, doi:10.1061/(ASCE)0733-9399(1985)111:7(909).
35. Ligarò, S.S. Valvo, P.S. A self‐adaptive strategy for uniformly accurate tracing of the equilibrium paths of elastic reticulated structures. Int. J. Num. Methods Eng. 1999, 46, 783–804, doi:10.1002/(SICI)1097-0207(19991030)46:6%3C783::AID-NME674%3E3.0.CO2-G.
36. Ligarò, S.S. Valvo, P.S. Large displacement analysis of elastic pyramidal trusses. Int. J. Solids Struct. 2006, 43, 4867–4887, doi:10.1016/j.ijsolstr.2005.06.100.
37. Rezaiee-Pajand, M. Rajabzadeh-Safaei, N. Exact post-buckling analysis of planar and space trusses. Eng. Struct. 2020, 223, 111146, doi:10.1016/j.engstruct.2020.111146.
38. PN-EN 1991-1-3: Eurocode 1: Actions on structures—Part 1–3: General actions—Snow loads Publisher: PKN, Warsaw, Poland, 2005.
39. PN-EN 1991-1-4: Eurocode 1: Actions on structures—Part 1–4: General actions—Wind actions Publisher: PKN, Warsaw, Poland, 2008.
40. PN-EN 1990:2004. Eurocode: Basis of structural design Publisher: PKN, Warsaw, Poland, 2008.